Slow light in degenerate fermi gases.
نویسندگان
چکیده
We investigate the effect of slow light propagating in a degenerate atomic Fermi gas. In particular we use slow light with an orbital angular momentum. We present a microscopic theory for the interplay between light and matter and show how the slow light can provide an effective magnetic field acting on the electrically neutral fermions, a direct analogy of the free electron gas in an uniform magnetic field. As an example we illustrate how the corresponding de Haas-van Alphen effect can be seen in a gas of neutral atomic fermions.
منابع مشابه
Long-Lived Spin-Orbit-Coupled Degenerate Dipolar Fermi Gas
We describe the creation of a long-lived spin-orbit-coupled gas of quantum degenerate atoms using the most magnetic fermionic element, dysprosium. Spin-orbit coupling arises from a synthetic gauge field created by the adiabatic following of degenerate dressed states composed of optically coupled components of an atomic spin. Because of dysprosium’s large electronic orbital angular momentum and ...
متن کاملProduction of a degenerate Fermi gas of metastable helium-3 atoms
Most of this book discusses Fermi gases composed of alkali atoms. Since the first realization of a degenerate K Fermi gas in 1999, Li has been the only other fermionic atom to be cooled below the Fermi temperature. In this contribution we will discuss our recent results on cooling fermionic He below the Fermi temperature. This has not been performed with ground state He, but with He in the meta...
متن کاملFiftyfold improvement in the number of quantum degenerate fermionic atoms.
We have produced a quantum degenerate 6Li Fermi gas with up to 7 x 10(7) atoms, an improvement by a factor of 50 over all previous experiments with degenerate Fermi gases. This was achieved by sympathetic cooling with bosonic 23Na in the F=2, upper hyperfine ground state. We have also achieved Bose-Einstein condensation of F=2 sodium atoms by direct evaporation.
متن کاملDegenerate Fermi gases of ytterbium.
Evaporative cooling was performed to cool fermionic 173Yb atoms in a crossed optical dipole trap. The large elastic collision rate leads to efficient evaporation and we have successfully cooled the atoms to 0.37+/-0.06 of the Fermi temperature, that is to say, to a quantum degenerate regime. In this regime, a plunge of evaporation efficiency was observed as a result of Fermi degeneracy.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 93 3 شماره
صفحات -
تاریخ انتشار 2004