A Functorial Approach to Dedekind Completions and the Representation of Vector Lattices and `-algebras by Normal Functions
نویسندگان
چکیده
Unlike the uniform completion, the Dedekind completion of a vector lattice is not functorial. In order to repair the lack of functoriality of Dedekind completions, we enrich the signature of vector lattices with a proximity relation, thus arriving at the category pdv of proximity Dedekind vector lattices. We prove that the Dedekind completion induces a functor from the category bav of bounded archimedean vector lattices to pdv , which in fact is an equivalence. We utilize the results of Dilworth [14] to show that every proximity Dedekind vector lattice D is represented as the normal real-valued functions on the compact Hausdorff space associated with D. This yields a contravariant adjunction between pdv and the category KHaus of compact Hausdorff spaces, which restricts to a dual equivalence between KHaus and the proper subcategory of pdv consisting of those proximity Dedekind vector lattices in which the proximity is uniformly closed. We show how to derive the classic Yosida Representation [40], Kakutani-Krein Duality [24, 26], Stone-Gelfand-Naimark Duality [35, 16], and StoneNakano Theorem [35, 32] from our approach.
منابع مشابه
EEH: AGGH-like public key cryptosystem over the eisenstein integers using polynomial representations
GGH class of public-key cryptosystems relies on computational problems based on the closest vector problem (CVP) in lattices for their security. The subject of lattice based cryptography is very active and there have recently been new ideas that revolutionized the field. We present EEH, a GGH-Like public key cryptosystem based on the Eisenstein integers Z [ζ3] where ζ3 is a primitive...
متن کاملDuality for Lattice-Ordered Algebras and for Normal Algebraizable Logics
Part I of this paper is developed in the tradition of Stone-type dualities, where we present a new topological representation for general lattices (innuenced by and abstracting over both Goldblatt's 17] and Urquhart's 46]), identifying them as the lattices of stable compact-opens of their dual Stone spaces (stability refering to a closure operator on subsets). The representation is functorial a...
متن کاملPOINT DERIVATIONS ON BANACH ALGEBRAS OF α-LIPSCHITZ VECTOR-VALUED OPERATORS
The Lipschitz function algebras were first defined in the 1960s by some mathematicians, including Schubert. Initially, the Lipschitz real-value and complex-value functions are defined and quantitative properties of these algebras are investigated. Over time these algebras have been studied and generalized by many mathematicians such as Cao, Zhang, Xu, Weaver, and others. Let be a non-emp...
متن کاملDIRECTLY INDECOMPOSABLE RESIDUATED LATTICES
The aim of this paper is to extend results established by H. Onoand T. Kowalski regarding directly indecomposable commutative residuatedlattices to the non-commutative case. The main theorem states that a residuatedlattice A is directly indecomposable if and only if its Boolean center B(A)is {0, 1}. We also prove that any linearly ordered residuated lattice and anylocal residuated lattice are d...
متن کاملAn equivalence functor between local vector lattices and vector lattices
We call a local vector lattice any vector lattice with a distinguished positive strong unit and having exactly one maximal ideal (its radical). We provide a short study of local vector lattices. In this regards, some characterizations of local vector lattices are given. For instance, we prove that a vector lattice with a distinguished strong unit is local if and only if it is clean with non no-...
متن کامل