Real-Time Scheduling of Parallel Tasks under a General DAG Model

نویسندگان

  • Abusayeed Saifullah
  • David Ferry
  • Kunal Agrawal
  • Chenyang Lu
  • Christopher Gill
چکیده

Due to their potential to deliver increased performance over single-core processors, multi-core processors have become mainstream in processor design. Computation-intensive real-time systems must exploit intra-task parallelism to take full advantage of multi-core processing. However, existing results in real-time scheduling of parallel tasks focus on restrictive task models such as the synchronous model where a task is a sequence of alternating parallel and sequential segments, and parallel segments have threads of execution that are of equal length. In this paper, we address a general model for deterministic parallel tasks, where a task is represented as a DAG with different nodes having different execution requirements. We make several key contributions towards both preemptive and non-preemptive realtime scheduling of DAG tasks on multi-core processors. First, we propose a task decomposition that splits a DAG into sequential tasks. Second, we prove that parallel tasks, upon decomposition, can be scheduled using preemptive global EDF with a resource augmentation bound of 4. This bound is as good as the best known bound for more restrictive models, and is the first for a general DAG model. Third, we prove that the decomposition has a resource augmentation bound of 4 plus a non-preemption overhead for non-preemptive global EDF scheduling. To our knowledge, this is the first resource augmentation bound for nonpreemptive scheduling of parallel tasks. Through simulations, we demonstrate that the achieved bounds are safe and sufficient.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Capacity Augmentation Bound of Federated Scheduling for Parallel DAG Tasks

We present a novel federated scheduling approach for parallel real-time tasks under a general directed acyclic graph (DAG) model. We provide a capacity augmentation bound of 2 for hard real-time scheduling; here we use the worst-case execution time and critical-path length of tasks to determine schedulability. This is the best known capacity augmentation bound for parallel tasks. By constructin...

متن کامل

A fuzzy mixed-integer goal programming model for a parallel machine scheduling problem with sequence-dependent setup times and release dates

This paper presents a new mixed-integer goal programming (MIGP) model for a parallel machine scheduling problem with sequence-dependent setup times and release dates. Two objectives are considered in the model to minimize the total weighted flow time and the total weighted tardiness simultaneously. Due to the com-plexity of the above model and uncertainty involved in real-world scheduling probl...

متن کامل

Thread-level priority assignment in global multiprocessor scheduling for DAG tasks

The advent of multiand many-core processors offers enormous performance potential for parallel tasks that exhibit sufficient intra-task thread-level parallelism. With a growth of novel parallel programming models (e.g., OpenMP, MapReduce), scheduling parallel tasks in the real-time context has received an increasing attention in the recent past. While most studies focused on schedulability anal...

متن کامل

بهینه سازی زمان بندی الگوریتم های موازی با استفاده از الگوریتم ژنتیک

In scheduling, a set of machines in parallel is a setting that is important, from both the theoretical and practical points of view. From the theoretical viewpoint, it is a generalization of the single machine scheduling problem. From the practical point of view the occurrence of resources in parallel is common in real-world. When machines are computers, a parallel program can be conceived as a...

متن کامل

Fuzzy Programming for Parallel Machines Scheduling: Minimizing Weighted Tardiness/Earliness and Flow Time through Genetic Algorithm

Appropriate scheduling and sequencing of tasks on machines is one of the basic and significant problems that a shop or a factory manager encounters; this is why in recent decades extensive studies have been done on scheduling issues. One type of scheduling problems is just-in-time (JIT) scheduling and in this area, motivated by JIT manufacturing, this study investigates a mathematical model for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012