Identification of ligand specificity determinants in AgrC, the Staphylococcus aureus quorum-sensing receptor.

نویسندگان

  • Edward Geisinger
  • Elizabeth A George
  • John Chen
  • Tom W Muir
  • Richard P Novick
چکیده

Activation of the agr system, a major regulator of staphylococcal virulence, is initiated by the binding of a specific autoinducing peptide (AIP) to the extracellular domain of AgrC, a classical receptor histidine protein kinase. There are four known agr specificity groups in Staphylococcus aureus, and we have previously localized the determinant of AIP receptor specificity to the C-terminal half of the AgrC sensor domain. We have now identified the specific amino acid residues that determine ligand activation specificity for agr groups I and IV, the two most closely related. Comparison of the AgrC-I and AgrC-IV sequences revealed a set of five divergent residues in the region of the second extracellular loop of the receptor that could be responsible. Accordingly, we exchanged these residues between AgrC-I and AgrC-IV and tested the resulting constructs for activation by the respective AIPs, measuring activation kinetics with a transcriptional fusion of blaZ to the principal agr promoter, P3. Exchange of all five residues caused a complete switch in receptor specificity. Replacement of two of the AgrC-IV residues by the corresponding residues in AgrC-I caused the receptor to be activated by AIP-I nearly as well as the wild type AgrC-I receptor. Replacement of two different AgrC-I residues by the corresponding AgrC-IV residues broadened receptor recognition specificity to include both AIPs. Various types of intermediate activity were observed with other replacement mutations. Preliminary characterization of the AgrC-I-AIP-I interaction suggests that ligand specificity may be sterically determined.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis for ligand recognition and discrimination of a quorum-quenching antibody.

In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using "quorum sensing," which involves generation ...

متن کامل

Influence of the AgrC-AgrA complex on the response time of Staphylococcus aureus quorum sensing.

The Staphylococcus aureus agr quorum-sensing system plays a major role in the transition from the persistent to the virulent phenotype. S. aureus agr type I to IV strains are characterized by mutations in the sensor domain of the histidine kinase AgrC and differences in the sequences of the secreted autoinducing peptides (AIP). Here we demonstrate that interactions between the cytosolic domain ...

متن کامل

Functional Plasticity of the AgrC Receptor Histidine Kinase Required for Staphylococcal Virulence.

Staphylococcus aureus employs the receptor histidine kinase (RHK), AgrC, to detect quorum-sensing (QS) pheromones, the autoinducer peptides (AIPs), which regulate the virulence of the bacterium. Variation in the QS circuit divides S. aureus into four subgroups, each producing a specific AIP-AgrC pair. While the timing of QS induction is known to differ among these subgroups, the molecular basis...

متن کامل

Key determinants of receptor activation in the agr autoinducing peptides of Staphylococcus aureus.

Staphylococcal pathogenesis is regulated by a two-component quorum-sensing system, agr, activated upon binding of a self-coded autoinducing peptide (AIP) to the receptor-histidine kinase, AgrC. The AIPs consist of a thiolactone macrocyle and an exocyclic "tail", both of which are important for function. In this report, characterization of the unique AIPs from the four known agr specificity grou...

متن کامل

Green Fluorescent Protein (GFP)-Based Overexpression Screening and Characterization of AgrC, a Receptor Protein of Quorum Sensing in Staphylococcus aureus

Staphylococcus aureus AgrC is an important component of the agr quorum-sensing system. AgrC is a membrane-embedded histidine kinase that is thought to act as a sensor for the recognition of environmental signals and the transduction of signals into the cytoplasm. However, the difficulty of expressing and purifying functional membrane proteins has drastically hindered in-depth understanding of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 14  شماره 

صفحات  -

تاریخ انتشار 2008