Patterned Immobilization of Antibodies within Roll-to-Roll Hot Embossed Polymeric Microfluidic Channels
نویسندگان
چکیده
This paper describes a method for the patterned immobilization of capture antibodies into a microfluidic platform fabricated by roll-to-roll (R2R) hot embossing on poly (methyl methacrylate) (PMMA). Covalent attachment of antibodies was achieved by two sequential inkjet printing steps. First, a polyethyleneimine (PEI) layer was deposited onto oxygen plasma activated PMMA foil and further cross-linked with glutaraldehyde (GA) to provide an amine-reactive aldehyde surface (PEI-GA). This step was followed by a second deposition of antibody by overprinting on the PEI-GA patterned PMMA foil. The PEI polymer ink was first formulated to ensure stable drop formation in inkjet printing and the printed films were characterized using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Anti-CRP antibody was patterned on PMMA foil by the developed method and bonded permanently with R2R hot embossed PMMA microchannels by solvent bonding lamination. The functionality of the immobilized antibody inside the microfluidic channel was evaluated by fluorescence-based sandwich immunoassay for detection of C-reactive protein (CRP). The antibody-antigen assay exhibited a good level of linearity over the range of 10 ng/ml to 500 ng/ml (R(2) = 0.991) with a calculated detection limit of 5.2 ng/ml. The developed patterning method is straightforward, rapid and provides a versatile approach for creating multiple protein patterns in a single microfluidic channel for multiplexed immunoassays.
منابع مشابه
A Low-aspect-ratio, Roll-to-roll Hot Embossed Inertial Microfluidic Sorter
This work presents a low-aspect-ratio (LAR) inertial microfluidic design compatible with roll-to-roll (R2R) hot embossing for size-based cell or microparticle separation in a low-cost and disposable format. The device consists of two segments of LAR channels in which inertial lift forces are used to differentiate lateral positions based on size for separation downstream. Separation of 18μm and ...
متن کاملDisposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria.
We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic device...
متن کاملEffects of Preheat Supply on Embossed Pattern Depth in Roll-to-Roll Process
In this study, we examined the sensitivity of embossed pattern depth to preheat supply and cooling, and also tested how pattern type and density affect the embossed depth. The main factors such as roller temperature, roller speed, and applied force that mostly affect embossed pattern qualities of roll-to-roll hot embossing were determined based on the response surface methodology. Eight conditi...
متن کاملLab-on-Chip, Surface-Enhanced Raman Analysis by Aerosol Jet Printing and Roll-to-Roll Hot Embossing
Surface-enhanced Raman spectroscopy (SERS) combines the high specificity of Raman scattering with high sensitivity due to an enhancement of the electromagnetic field by metallic nanostructures. However, the tyical fabrication methods of SERS substrates suffer from low throughput and therefore high costs. Furthermore, point-of-care applications require the investigation of liquid solutions and thu...
متن کاملRoll-to-roll continuous patterning and transfer of graphene via dispersive adhesion.
We present a roll-to-roll, continuous patterning and transfer of graphene sheets capable of residue-free and fast patterning. The graphene sheet is supported with dispersive adhesion. Graphene is continuously patterned by the difference in adhesion forces with a pre-defined embossed roller. The patterned graphene sheet adheres to the polyethylene terephthalate (PET)/silicone with very low stren...
متن کامل