wannier90: A tool for obtaining maximally-localised Wannier functions
نویسندگان
چکیده
We present wannier90, a program for calculating maximally-localised Wannier functions (MLWF) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWF in real space. This is done in the space of unitary matrices that describe rotations of the Bloch bands at each k-point. As a result, wannier90 is independent of the basis set used in the underlying calculation to obtain the Bloch states. Therefore, it may be interfaced straightforwardly to any electronic structure code. The locality of MLWF can be exploited to compute band-structure, density of states and Fermi surfaces at modest computational cost. Furthermore, wannier90 is able to output MLWF for visualisation and other post-processing purposes. Wannier functions are already used in a wide variety of applications. These include analysis of chemical bonding in real space; calculation of dielectric properties via the modern theory of polarisation; and as an accurate and minimal basis set in the construction of model Hamiltonians for large-scale systems, in linear-scaling quantum Monte Carlo calculations, and for efficient computation of material properties, such as the anomalous Hall coefficient. wannier90 is freely available under the GNU General Public License from http://www.wannier.org/.
منابع مشابه
An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions
wannier90 is a program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch energy bands that may or may not be attached to or mixed with other bands. The formalism works by minimising the total spread of the MLWFs in real space. This done in the space of unitary matrices that describe rotations of the Bloch bands at each kpoint. As a result, wannier90 is independen...
متن کاملOptimizing the post-Wannier Berry-phase Code for Optical and Anomalous Hall Conductivities and Orbital Magnetization
WANNIER90 is a quantum-mechanics code for the computation of maximally localized Wannier functions, ballistic transport, thermoelectrics and Berry-phase derived properties – such as optical conductivity, orbital magnetization and anomalous Hall conductivity. In this whitepaper, we report on optimizations for WANNIER90 carried out in the course of the PRACE preparatory access project PA2231. Thr...
متن کاملAutomated quantum conductance calculations using maximally-localised Wannier functions
A robust, user-friendly, and automated method to determine quantum conductance in quasi-one-dimensional systems is presented. The scheme relies upon an initial density-functional theory calculation in a specific geometry after which the ground-state eigenfunctions are transformed to a maximally-localised Wannier function (MLWF) basis. In this basis, our novel algorithms manipulate and partition...
متن کاملEPW: A program for calculating the electron-phonon coupling using maximally localized Wannier functions
EPW (Electron-Phonon coupling using Wannier functions) is a program written in FORTRAN90 for calculating the electron-phonon coupling in periodic systems using density-functional perturbation theory and maximally-localized Wannier functions. EPW can calculate electron-phonon interaction self-energies, electron-phonon spectral functions, and total as well as mode-resolved electron-phonon couplin...
متن کاملCalculation of maximally localized Wannier functions and hopping parameters for LaMnO3
Strong electronic correlations lead to rich phase diagrams of electronic and magnetic states for many transition-metal oxides. LaMnO3 is one of the prototype materials to study the resulting phenomena such as for example colossal magnetoresistance. The widely used local density approximation (LDA) to density functional theory (DFT) fails to correctly describe correlated-electron systems. Theref...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Physics Communications
دوره 178 شماره
صفحات -
تاریخ انتشار 2008