Comparaison de relations spatiales floues - Approches par transport optimal et morphologie mathématique Comparison of fuzzy spatial relations - Optimal transport and mathematical morphology approaches
نویسندگان
چکیده
Observing the evolution of a pathology in medical images, or of soil occupation in remote sensing, detecting changes in video sequences, updating a spatial information system are examples that can all benefit from quantification and comparison of spatial relations between objects in the observed scenes. In this paper, we propose two approaches to compare spatial relations represented as fuzzy sets, relying on optimal transport and mathematical morphology, respectively. Examples on synthetic video sequences illustrate the interest of these approaches.
منابع مشابه
Deux approches pour la comparaison de relations spatiales floues. Transport optimal et morphologie mathématique
RÉSUMÉ. Les relations spatiales sont au cœur de beaucoup de méthodes d’interprétation de scènes à l’aide d’informations structurelles. Lorsque ces scènes sont analysées par comparaison avec un modèle, ou lorsqu’elles sont dynamiques et que l’on s’intéresse à leur évolution, il faut alors développer des outils pour comparer des relations spatiales, souvent exprimées ou connues de manière impréci...
متن کاملMathematical morphology on bipolar fuzzy sets : general algebraic framework Morphologie mathématique sur des ensembles flous bipolaires : un cadre algébrique général
In many domains of information processing, bipolarity is a core feature to be considered: positive information represents what is possible or preferred, while negative information represents what is forbidden or surely false. If the information is moreover endowed with vagueness and imprecision, as is the case for instance in spatial information processing, then bipolar fuzzy sets constitute an...
متن کاملDe ning and computing Hausdor distances between distributions on the real line and on the circle: link between optimal transport and morphological dilations
Abstract: Comparing probability or possibility distributions is important in many elds of information processing under uncertainty. In this paper we address the question of de ning and computing Hausdor distances between distributions in a general sense. We propose several dilations of distributions, and exhibit some links betweenLévy-Prokhorovdistances anddilation-baseddistances. In particular...
متن کاملHausdorff Distances Between Distributions Using Optimal Transport and Mathematical Morphology
In this paper we address the question of defining and computing Hausdorff distances between distributions in a general sense. We exhibit some links between Prokhorov-Lévy distances and dilation-based distances. In particular, mathematical morphology provides an elegant way to deal with periodic distributions. The case of possibility distributions is addressed using fuzzy mathematical morphology...
متن کاملQuelques liens entre la morphologie mathématique et l’analyse formelle de concepts On some links between mathematical morphology and formal concept analysis
In this paper we extend some previously established links between the derivation operators used in formal concept analysis and some mathematical morphology operators to fuzzy concept analysis. We also propose to use mathematical morphology to navigate in a fuzzy concept lattice and perform operations on it. This paper proposes a discussion and new results on such links and their potential inter...
متن کامل