Satellite Image Deconvolution Using Complex Wavelet Packets
نویسندگان
چکیده
The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem. The direct inversion leads to unacceptable noise amplification. Usually, either the problem is regularized during the inversion process, or the noise is filtered after deconvolution and decomposition in the wavelet transform domain. Herein, we have developed the second solution, by thresholding the coefficients of a new complex wavelet packet transform ; the thresholding functions are automatically estimated. The use of complex wavelet packets enables translation invariance, and takes into account the directions, while remaining of complexity O(N). The obtained results exhibit both correctly restored textures and a high SNR in homogeneous areas. Compared to concurrent algorithms, the proposed method is faster, rotation invariant and takes into account the directions of the details and textures of the image to restore them better. The images deconvolved this way can be used as they are (the restoration step proposed here can be directly inserted in the acquisition chain). But they also can provide a starting point of an adaptive regularization method, enabling one to obtain sharper edges. Key-words: Deconvolution, Estimation techniques, Complex wavelet packets, Satellite images Acknowledgements: The authors would like to thank Jérôme Kalifa (from CMAPX, at École Polytechnique) for interesting discussions and Nick Kingsbury (from the Signal Processing Group, Dept. of Eng., University of Cambridge) for complex wavelets source code and collaboration, Peter de Rivaz (same institution) for his kind remarks, and the French Space Agency (CNES) for providing the image of Nîmes (SPOT 5 simulation). Déconvolution d’images satellitaires par paquets d’ondelettes complexes Résumé : La déconvolution des images satellitaires floues et bruitées est un problème inverse mal posé. L’inversion directe entraîne une amplification inacceptable du bruit. Généralement, soit le problème est régularisé lors de l’inversion, soit le bruit est filtré après déconvolution et décomposition dans le domaine de la transformée en ondelettes. Nous avons developpé dans ce rapport la deuxième solution, en seuillant les coefficients d’une nouvelle transformée en paquets d’ondelettes complexes, les fonctions de seuillage étant estimées de manière automatique. L’utilisation de paquets d’ondelettes complexes rend cette méthode invariante par translation, et tient compte des directions, tout en restant d’une complexité O(N). Les résultats obtenus présentent à la fois des textures nettes et un très bon rapport signal/bruit dans les zones homogènes. Par rapport aux algorithmes concurrents, la méthode que nous proposons est plus rapide, invariante par rotation, et tient compte de la directionnalité des détails et des textures de l’image pour mieux les restaurer. Les images déconvoluées de cette manière peuvent être utilisées telles quelles (la restauration peut être intégrée directement dans la chaîne d’acquisition). Mais elles peuvent également constituer le point de départ d’une méthode de régularisation adaptative, permettant d’obtenir des contours plus francs. Mots-clés : Déconvolution, Techniques d’estimation, Paquets d’ondelettes complexes, Images satellitaires Remerciements : Les auteurs souhaitent remercier Jérôme Kalifa (CMAPX, École Polytechnique) pour des discussions fructueuses, Nick Kingsbury (Signal Processing Group, Dept. of Eng., University of Cambridge) pour le code source des ondelettes complexes et pour sa collaboration, Peter de Rivaz (même institut) pour ses remarques pertinentes, ainsi que le CNES pour l’image de Nîmes (simulation SPOT 5). Satellite image deconvolution using complex wavelet packets 3
منابع مشابه
Image deconvolution using hidden Markov tree modeling of complex wavelet packets
In this paper, we propose to use a hidden Markov tree modeling of the complex wavelet packet transform, to capture the inter-scale dependencies of natural images. First, the observed image, blurred and noisy, is deconvolved without regularization. Then its transform is denoised within a Bayesian framework using the proposed model, whose parameters are estimated by an EM technique. The total com...
متن کاملSatellite and aerial image deconvolution using an EM method with complex wavelets
In this paper, we present a new deconvolution method, able to deal with noninvertible blurring functions. To avoid noise amplification, a prior model of the image to be reconstructed is used within a Bayesian framework. We use a spatially adaptive prior, defined with a complex wavelet transform in order to preserve shift invariance and to better restore variously oriented features. The unknown ...
متن کاملEstimation of Adaptive Parameters for Satellite Image Deconvolution
The deconvolution of blurred and noisy satellite images is an ill-posed inverse problem, which can be regularized within a Bayesian context by using an a priori model of the reconstructed solution. Since real satellite data show spatially variant characteristics, we propose to use an inhomogeneous model. We use the Maximum Likelihood Estimator (MLE) to estimate its parameters. We demonstrate th...
متن کاملParallel compact coding of satellite images with wavelet packets using PVM
Image compression methods that use wavelet transforms have been successful in providing high rates of compression while maintaining good image quality. Even superior to these wavelet techniques are methods based on wavelet packet decompositions. When processing satellite data the amount of data suggests to use a parallel approach. Wavelet packet decomposition with best basis selection is implem...
متن کاملWavelet Packets for Time-frequency Analysis of Multispectral Imagery
Multispectral geospatial image sets retain the scene’s spatial and spectral information. To jointly use both of them for analysis purposes, we propose to extend the concept of wavelet packets, by introducing a new integrated multispectral entropy function. Each spectral band is individually decomposed by the wavelet packets transform, and then the entropy term is jointly guided by information f...
متن کامل