Oxidative damage to 5-methylcytosine in DNA.
نویسندگان
چکیده
Exposure of pyrimidines of DNA to ionizing radiation under aerobic conditions or oxidizing agents results in attack on the 5,6 double bond of the pyrimidine ring or on the exocyclic 5-methyl group. The primary product of oxidation of the 5,6 double bond of thymine is thymine glycol, while oxidation of the 5-methyl group yields 5-hydroxymethyluracil. Oxidation of the 5,6 double bond of cytosine yields cytosine glycol, which decomposes to 5-hydroxycytosine, 5-hydroxyuracil and uracil glycol, all of which are repaired in DNA by Escherichia coli endonuclease III. We now describe the products of oxidation of 5-methylcytosine in DNA. Poly(dG-[3H]dmC) was gamma-irradiated or oxidized with hydrogen peroxide in the presence of Fe3+ and ascorbic acid. The oxidized co-polymer was incubated with endonuclease III or 5-hydroxymethyluracil-DNA glycosylase, to determine whether repairable products were formed, or digested to 2'-deoxyribonucleosides, to determine the total complement of oxidative products. Oxidative attack on 5-methylcytosine resulted primarily in formation of thymine glycol. The radiogenic yield of thymine glycol in poly(dG-dmC) was the same as that in poly(dA-dT), demonstrating that 5-methylcytosine residues in DNA were equally susceptible to radiation-induced oxidation as were thymine residues.
منابع مشابه
Changes of DNA methylation and hydroxymethylation in plant protoplast cultures.
Cytosine methylation patterns in higher eukaryotes are important in gene regulation. Along with 5-methylcytosine (5-mC), a newly discovered constituent of mammalian DNA, 5-hydroxymethylcytosine (5-hmC), is the other modified base in higher organisms. In this study we detected 5-hmC in plant protoplast DNA and demonstrated its increasing content during the first 72 hrs. of protoplast cultivation...
متن کاملOGG1 DNA Repair Gene Polymorphism As a Biomarker of Oxidative and Genotoxic DNA Damage
Background: Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this stu...
متن کاملDynamic Readers for 5-(Hydroxy)Methylcytosine and Its Oxidized Derivatives
Tet proteins oxidize 5-methylcytosine (mC) to generate 5-hydroxymethyl (hmC), 5-formyl (fC), and 5-carboxylcytosine (caC). The exact function of these oxidative cytosine bases remains elusive. We applied quantitative mass-spectrometry-based proteomics to identify readers for mC and hmC in mouse embryonic stem cells (mESC), neuronal progenitor cells (NPC), and adult mouse brain tissue. Readers f...
متن کاملInflammation-mediated cytosine damage: a mechanistic link between inflammation and the epigenetic alterations in human cancers.
Aberrant methylation patterns have long been known to exist in the promoter regions of key regulatory genes in the DNA of tumor cells. However, the mechanisms by which these methylation patterns become altered during the transformation of normal cells to tumor cells have remained elusive. We have recently shown in in vitro studies that inflammation-mediated halogenated cytosine damage products ...
متن کاملSolid phase synthesis and restriction endonuclease cleavage of oligodeoxynucleotides containing 5-(hydroxymethyl)-cytosine.
Emerging data suggest an important role for cytosine methylation in tumorigenesis. Simultaneously, recent studies indicate a significant contribution of endogenous oxidative DNA damage to the development of human disease. Oxidation of the 5-methyl group of 5-methylcytosine (5mC) residues in DNA results in the formation of 5-(hydroxymethyl)cytosine (hmC). The biological consequences ofhmC residu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 23 16 شماره
صفحات -
تاریخ انتشار 1995