Nature inspired optimization of large problems
نویسنده
چکیده
منابع مشابه
CACO : Competitive Ant Colony Optimization, A Nature-Inspired Metaheuristic For Large-Scale Global Optimization
Large-scale problems are nonlinear problems that need metaheuristics, or global optimization algorithms. This paper reviews nature-inspired metaheuristics, then it introduces a framework named Competitive Ant Colony Optimization inspired by the chemical communications among insects. Then a case study is presented to investigate the proposed framework for large-scale global optimization.
متن کاملBQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems
Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...
متن کاملA FAST GA-BASED METHOD FOR SOLVING TRUSS OPTIMIZATION PROBLEMS
Due to the complex structural issues and increasing number of design variables, a rather fast optimization algorithm to lead to a global swift convergence history without multiple attempts may be of major concern. Genetic Algorithm (GA) includes random numerical technique that is inspired by nature and is used to solve optimization problems. In this study, a novel GA method based on self-a...
متن کاملA New Hybrid Flower Pollination Algorithm for Solving Constrained Global Optimization Problems
Global optimization methods play an important role to solve many real-world problems. Flower pollination algorithm (FP) is a new nature-inspired algorithm, based on the characteristics of flowering plants. In this paper, a new hybrid optimization method called hybrid flower pollination algorithm (FPPSO) is proposed. The method combines the standard flower pollination algorithm (FP) with the par...
متن کاملNature-Inspired Algorithms: State-of-Art, Problems and Prospects
Nature-inspired algorithms have gained immense popularity in recent years to tackle hard real world (NP hard and NP complete) problems and solve complex optimization functions whose actual solution doesn't exist. The paper presents a comprehensive review of 12 nature inspired algorithms. This study provides the researchers with a single platform to analyze the conventional and contemporary...
متن کاملEditorial for the special issue of Information Sciences Journal (ISJ) on "Nature-inspired algorithms for large scale global optimization"
In the past few decades, many nature-inspired optimization algorithms have been developed successfully for solving a wide range of optimization problems. (EDA) are just some representative examples among many others. These meta-heuristic algorithms do not rely on gradient information, and are less likely to be stuck on local optima because of their use of a population of candidate solutions, th...
متن کامل