Cubic leaves
نویسندگان
چکیده
We determine those cubic graphs with at most 22 vertices which are leaves of partial triple systems. As a first step towards a complete characterization of cubic leaves, we also show several classes of cubic graphs to be leaves.
منابع مشابه
Research on Fast Reconstruction of Virtual Plant Leaves
Based on the original image of plants leaves, the edge detection method will be used to extract the geometrical morphology of leaves. The characteristic points of the contour can be calculated by Harris method. The characteristic points will be used to construct the cubic Bezier curve fitting of contours of leaves, the leaf vein is generated by L system. Finally, the simulation drawing of plant...
متن کاملMax-leaves spanning tree is APX-hard for cubic graphs
We consider the problem of finding a spanning tree with maximum number of leaves (MaxLeaf). A 2-approximation algorithm is known for this problem, and a 3/2-approximation algorithm when restricted to graphs where every vertex has degree 3 (cubic graphs). MaxLeaf is known to be APX-hard in general, and NP-hard for cubic graphs. We show that the problem is also APX-hard for cubic graphs. The APX-...
متن کاملA 3/2-Approximation Algorithm for Finding Spanning Trees with Many Leaves in Cubic Graphs
We consider the problem of finding a spanning tree that maximizes the number of leaves (MaxLeaf). We provide a 3/2-approximation algorithm for this problem when restricted to cubic graphs, improving on the previous 5/3-approximation for this class. To obtain this approximation we define a graph parameter x(G), and construct a tree with at least (n−x(G)+4)/3 leaves, and prove that no tree with m...
متن کاملOn Finding Directed Trees with Many Leaves
The Rooted Maximum Leaf Outbranching problem consists in finding a spanning directed tree rooted at some prescribed vertex of a digraph with the maximum number of leaves. Its parameterized version asks if there exists such a tree with at least $k$ leaves. We use the notion of $s-t$ numbering to exhibit combinatorial bounds on the existence of spanning directed trees with many leaves. These comb...
متن کاملA 5/3-Approximation for Finding Spanning Trees with Many Leaves in Cubic Graphs
For a connected graph G, let L(G) denote the maximum number of leaves in a spanning tree in G. The problem of computing L(G) is known to be NP-hard even for cubic graphs. We improve on Loryś and Zwoźniak’s result presenting a 5/3-approximation for this problem on cubic graphs. This result is a consequence of new lower and upper bounds for L(G) which are interesting on their own. We also show a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 61 شماره
صفحات -
تاریخ انتشار 2015