Pulses in a Gierer-Meinhardt Equation with a Slow Nonlinearity

نویسندگان

  • Frits Veerman
  • Arjen Doelman
چکیده

In this paper, we study in detail the existence and stability of localized pulses in a GiererMeinhardt equation with an additional ‘slow’ nonlinearity. This system is an explicit example of a general class of singularly perturbed, two component reaction-diffusion equations that goes significantly beyond wellstudied model systems such as Gray-Scott and Gierer-Meinhardt. We investigate the existence of these pulses using the methods of geometric singular pertubation theory. The additional nonlinearity has a profound impact both on the stability analysis of the pulse –compared to Gray-Scott/Gierer-Meinhardt type models a distinct extension of the Evans function approach has to be developed– and on the stability properties of the pulse: several (de)stabilization mechanisms turn out to be possible. Moreover, it is shown by numerical simulations that, unlike the Gray-Scott/Gierer-Meinhardt type models, the pulse solutions of the model exhibit a rich and complex behaviour near the Hopf bifurcations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semistrong Pulse Interactions in a Class of Coupled Reaction-Diffusion Equations

Pulse-pulse interactions play central roles in a variety of pattern formation phenomena, including self-replication. In this article, we develop a theory for the semistrong interaction of pulses in a class of singularly perturbed coupled reaction-diffusion equations that includes the (generalized) Gierer– Meinhardt, Gray–Scott, Schnakenberg, and Thomas models, among others. Geometric conditions...

متن کامل

Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized

We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semistrong regime of two-pulse interactions in a regularized Gierer–Meinhardt system. In the semistrong limit the localized activator pulses interact strongly through the slowly varying inhibitor. The interaction is not tail-tail as in the weak interaction limit, and the pulse amplitudes and speeds ...

متن کامل

Nonlinear Asymptotic Stability of the Semistrong Pulse Dynamics in a Regularized Gierer-Meinhardt Model

We use renormalization group (RG) techniques to prove the nonlinear asymptotic stability for the semi-strong regime of two-pulse interactions in a regularized Gierer-Meinhardt system. In the semi-strong limit the localized activator pulses interact strongly through the slowly varying inhibitor. The interaction is not tail-tail as in the weak interaction limit, and the pulse amplitudes and speed...

متن کامل

Local Stability of Spike Steady States in a Simplified Gierer-meinhardt System

In this paper we study the stability of the single internal spike solution of a simplified Gierer-Meinhardt’ system of equations in one space dimension. The linearization around this spike consists of a selfadjoint differential operator plus a non-local term, which is a non-selfadjoint compact integral operator. We find the asymptotic behaviour of the small eigenvalues and we prove stability of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Applied Dynamical Systems

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013