Ca(2+) stabilizes the semiquinone radical of pyrroloquinoline quinone.
نویسندگان
چکیده
Spectroelectrochemical studies were performed on the interaction between Ca(2+) and pyrroloquinoline quinone (PQQ) in soluble glucose dehydrogenase (sGDH) and in the free state by applying a mediated continuous-flow column electrolytic spectroelectrochemical technique. The enzyme forms used were holo-sGDH (the holo-form of sGDH from Acinetobacter calcoaceticus) and an incompletely reconstituted form of this, holo-X, in which the PQQ-activating Ca(2+) is lacking. The spectroelectrochemical and ESR data clearly demonstrated the generation of the semiquinone radical of PQQ in holo-sGDH and in the free state in the presence of Ca(2+). In contrast, in the absence of Ca(2+) no semiquinone was observed, either for PQQ in the free state (at pH 7.0) or in the enzyme (holo-X). Incorporation of Ca(2+) into the active site of holo-X, yielding holo-sGDH, caused not only stabilization of the semiquinone form of PQQ but also a negative shift (of 26.5 mV) of the two-electron redox potential, indicating that the effect of Ca(2+) is stronger on the oxidized than on the reduced PQQ. Combining these data with the observations on the kinetic and chemical mechanisms, it was concluded that the strong stimulating effect of Ca(2+) on the activity of sGDH can be attributed to facilitation of certain kinetic steps, and not to improvement of the thermodynamics of substrate oxidation. The consequences of this conclusion are discussed for the oxidative as well as for the reductive part of the reaction of sGDH.
منابع مشابه
Reversible thermal inactivation of the quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus. Ca2+ ions are necessary for re-activation.
The soluble form of the homogeneous quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus is reversibly inactivated at temperatures above 35 degrees C. An equilibrium is established between active and denatured enzyme, this depending on the protein concentration and the inactivation temperature used. Upon thermal inactivation the enzyme dissociates into the prosthetic group pyrrol...
متن کاملThe metabolism of quinone-containing alkylating agents: free radical production and measurement.
The metabolism of quinone-containing antitumor agents involves enzymatic reduction of the quinone by one or two electrons. This reduction results in the formation of the semiquinone or the hydroquinone of the anticancer drug. The consequence of these enzymatic reductions is that the semiquinone yields its extra electron to oxygen with the formation of superoxide radical anion and the original q...
متن کاملCharacterization of mutants that change the hydrogen bonding of the semiquinone radical at the QH site of the cytochrome bo3 from Escherichia coli.
The cytochrome bo3 ubiquinol oxidase catalyzes the two-electron oxidation of ubiquinol in the cytoplasmic membrane of Escherichia coli, and reduces O2 to water. This enzyme has a high affinity quinone binding site (QH), and the quinone bound to this site acts as a cofactor, necessary for rapid electron transfer from substrate ubiquinol, which binds at a separate site (QL), to heme b. Previous p...
متن کاملDediazoniation of p-hydroxybenzenediazonium ion in a neutral aqueous medium.
The dediazoniation of p-hydroxybenzenediazonium ion (PDQ) in a neutral aqueous medium has been studied under controlled experimental conditions to prevent photochemical and/or heterolytic side-reactions. Oxygen increased the dediazoniation rate of PDQ and caused the appearance of quinone and hydroquinone. An accumulation of quinone deriving from the reduction of PDQ by hydroquinone was also obs...
متن کاملDynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals
Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 357 Pt 3 شماره
صفحات -
تاریخ انتشار 2001