Simo-model-based Independent Component Analysis for High-fidelity Blind Separation of Acoustic Signals
نویسندگان
چکیده
We newly propose a novel blind separation framework for SingleInput Multiple-Output (SIMO)-model-based acoustic signals using the extended ICA algorithm, SIMO-ICA. The SIMO-ICA consists of multiple ICAs and a fidelity controller, and each ICA runs in parallel under the fidelity control of the entire separation system. The SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at the microphones. Thus, the separated signals of SIMO-ICA can maintain the spatial qualities of each sound source. In order to evaluate its effectiveness, separation experiments are carried out under both nonreverberant and reverberant conditions. The experimental results reveal that (1) the signal separation performance of the proposed SIMO-ICA is the same as that of the conventional ICA-based method, and that (2) the spatial quality of the separated sound in SIMO-ICA is remarkably superior to that of the conventional method, particularly for the fidelity of the sound reproduction.
منابع مشابه
High-fidelity Blind Separation of Acoustic Signals Using Simo-model-based Ica with Information-geometric Learning
We propose a new Single-Input Multiple-Output (SIMO)-modelbased ICA with information-geometric learning algorithm for highfidelity blind source separation. The SIMO-ICA consists of multiple ICAs and a fidelity controller, and each ICA runs in parallel under the fidelity control of the entire separation system. The SIMOICA can separate the mixed signals, not into monaural source signals but into...
متن کاملHigh-fidelity blind separation for convolutive mixture of acoustic signals using SIMO-model-based independent component analysis
We propose a novel blind separation framework for Single Input Multiple-Output (SIMO)守nodel-based acoustic sig nals using the extended ICA algorithm, SIMO-ICA. The SIMO-ICA consists of multiple ICAs and a 日delity con troller, and each ICA runs in parallel under the日delity con trol of the entire separation system. The SIMO-ICA can separate the mixed signals, not into monaural source sig nal...
متن کاملBlind Separation and Deconvolution for Real Convolutive Mixture of Temporally Correlated Acoustic Signals Using Simo-model-based Ica
We propose a new novel two-stage blind separation and deconvolution (BSD) algorithm for a real convolutive mixture of temporally correlated signals, in which a new Single-Input Multiple-Output (SIMO)-model-based ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA consists of multiple ICAs and a fidelity controller, and each ICA runs in parallel under fidelity control ...
متن کاملDoctoral Dissertation High-Fidelity Blind Source Separation Using Single-Input-Multiple-Output-Model-Based Independent Component Analysis
Blind source separation (BSS) technique using independent component analysis (ICA) for acoustic signals has been developed over the last decade. This technique assumes that the source signals are mutually independent, and can estimate the source signals from the mixed signals without a priori information. Thus, this technique is highly applicable in high-quality hands-free telecommunication sys...
متن کاملBlind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking
A new two-stage blind source separation (BSS) method for convolutive mixtures of speech is proposed, in which a single-input multiple-output (SIMO)-model-based independent component analysis (ICA) and a new SIMO-model-based binary masking are combined. SIMO-model-based ICA enables us to separate the mixed signals, not into monaural source signals but into SIMOmodel-based signals from independen...
متن کامل