Extreme events and entropy: A multiple quantile utility model

نویسندگان

  • Marcello Basili
  • Alain Chateauneuf
چکیده

This paper introduces a multiple quantile utility model of Cumulative Prospect Theory in an ambiguous setting. We show a representation theorem in which a prospect is valued by a composite value function. The composite value function is able to represent asymmetric attitude on extreme events and a rational prudence on ordinary events.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample-based quantile function estimation using entropy and self-determined probability weighted moments

The method of conventional probability-weighted moments (PWMs) and the principle of minimum cross entropy were combined to derive an analytical form of quantile function [Pandey, 2001]. This method is extended and improved in the present paper by utilizing the concept of self determined probability weighted moments (SD-PWMs). Minimum cross entropy principle and SD-PWMs from sample data were use...

متن کامل

Outer and Inner Confidence Intervals Based on Extreme Order Statistics in a Proportional Hazard Model

Let Mi and Mi be the maximum and minimum of the ith sample from k independent sample with different sample sizes, respectively. Suppose that the survival distribution function of the ith sample is F ̄i = F ̄αi, where αi is known and positive constant. It is shown that how various exact non-parametric inferential proce- ′ dures can be developed on the basis of Mi’s and Mi ’s for distribution ...

متن کامل

A Closer Examination of Extreme Value Theory Modeling in Value-at-Risk Estimation

Extreme value theory has been widely used for modeling the tails of return distribution. Generalized Pareto distribution (GPD) is popularly acknowledged as one of the major tools in Value-at-Risk (VaR) estimation. As Basel II stipulates the significance level for VaR estimation from previous 5% quantile level to more extremal quantile levels at 1%, it demands a more accurate estimation approach...

متن کامل

Which Quantile is the Most Informative ? Maximum Entropy Quantile Regression ∗

This paper studies the connections among quantile regression, the asymmetric Laplace distribution, and the maximum entropy. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. Using the resulting score functions we develop a maximum entropy quantile regr...

متن کامل

High quantile regression for extreme events

For extreme events, estimation of high conditional quantiles for heavy tailed distributions is an important problem. Quantile regression is a useful method in this field with many applications. Quantile regression uses an L1-loss function, and an optimal solution by means of linear programming. In this paper, we propose a weighted quantile regression method. Monte Carlo simulations are performe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Approx. Reasoning

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2011