Live imaging of apoptosis in a novel transgenic mouse highlights its role in neural tube closure

نویسندگان

  • Yoshifumi Yamaguchi
  • Naomi Shinotsuka
  • Keiko Nonomura
  • Kiwamu Takemoto
  • Keisuke Kuida
  • Hiroki Yosida
  • Masayuki Miura
چکیده

Many cells die during development, tissue homeostasis, and disease. Dysregulation of apoptosis leads to cranial neural tube closure (NTC) defects like exencephaly, although the mechanism is unclear. Observing cells undergoing apoptosis in a living context could help elucidate their origin, behavior, and influence on surrounding tissues, but few tools are available for this purpose, especially in mammals. In this paper, we used insulator sequences to generate a transgenic mouse that stably expressed a genetically encoded fluorescence resonance energy transfer (FRET)-based fluorescent reporter for caspase activation and performed simultaneous time-lapse imaging of apoptosis and morphogenesis in living embryos. Live FRET imaging with a fast-scanning confocal microscope revealed that cells containing activated caspases showed typical and nontypical apoptotic behavior in a region-specific manner during NTC. Inhibiting caspase activation perturbed and delayed the smooth progression of cranial NTC, which might increase the risk of exencephaly. Our results suggest that caspase-mediated cell removal facilitates NTC completion within a limited developmental window.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In toto live imaging of mouse morphogenesis and new insights into neural tube closure.

In the field of developmental biology, live imaging is a powerful tool for studying, in real time, the dynamic behaviors of tissues and cells during organ formation. Mammals, which develop in utero, have presented a challenge for live imaging. Here, we offer a novel, prolonged and robust live imaging system for visualizing the development of a variety of embryonic tissues in the midgestation mo...

متن کامل

Novel functions of folate receptor alpha in CNS development and diseases

(Folate receptor alpha), a GPI-anchored protein is critical for embryonic development. Disruption of both FRα alleles in mice results in pups with a range of malformations and is lethal to the embryos at the time of neural tube closure. Recent body of evidences emphasizes its role in neural tube defects, cerebral folate deficiency, autism and autism spectrum disorders. Circulating autoantibodie...

متن کامل

Apoptosis is not required for mammalian neural tube closure.

Apoptotic cell death occurs in many tissues during embryonic development and appears to be essential for processes including digit formation and cardiac outflow tract remodeling. Studies in the chick suggest a requirement for apoptosis during neurulation, because inhibition of caspase activity was found to prevent neural tube closure. In mice, excessive apoptosis occurs in association with fail...

متن کامل

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

SPECC1L deficiency results in increased adherens junction stability and reduced cranial neural crest cell delamination

Cranial neural crest cells (CNCCs) delaminate from embryonic neural folds and migrate to pharyngeal arches, which give rise to most mid-facial structures. CNCC dysfunction plays a prominent role in the etiology of orofacial clefts, a frequent birth malformation. Heterozygous mutations in SPECC1L have been identified in patients with atypical and syndromic clefts. Here, we report that in SPECC1L...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 195  شماره 

صفحات  -

تاریخ انتشار 2011