Simple and practical algorithm for sparse Fourier transform
نویسندگان
چکیده
We consider the sparse Fourier transform problem: given a complex vector x of length n, and a parameter k, estimate the k largest (in magnitude) coefficients of the Fourier transform of x. The problem is of key interest in several areas, including signal processing, audio/image/video compression, and learning theory. We propose a new algorithm for this problem. The algorithm leverages techniques from digital signal processing, notably Gaussian and Dolph-Chebyshev filters. Unlike the typical approach to this problem, our algorithm is not iterative. That is, instead of estimating “large” coefficients, subtracting them and recursing on the reminder, it identifies and estimates the k largest coefficients in “one shot”, in a manner akin to sketching/streaming algorithms. The resulting algorithm is structurally simpler than its predecessors. As a consequence, we are able to extend considerably the range of sparsity, k, for which the algorithm is faster than FFT, both in theory and practice.
منابع مشابه
The sparse fourier transform : theory & practice
The Fourier transform is one of the most fundamental tools for computing the frequency representation of signals. It plays a central role in signal processing, communications, audio and video compression, medical imaging, genomics, astronomy, as well as many other areas. Because of its widespread use, fast algorithms for computing the Fourier transform can benefit a large number of applications...
متن کاملThe Simple Genetic Algorithm and the Walsh Transform: Part I, Theory
This paper is the first part of a two-part series. It proves a number of direct relationships between the Fourier transform and the simple genetic algorithm. (For a binary representation, the Walsh transform is the Fourier transform). The results are of a theoretical nature and are based on the analysis of mutation and crossover. The Fourier transform of the mixing matrix is shown to be sparse....
متن کاملAn alternating optimization approach for phase retrieval
In this paper, we address the problem of phase retrieval to recover a signal from the magnitude of its Fourier transform. In many applications of phase retrieval, the signals encountered are naturally sparse. In this work, we consider the case where the signal is sparse under the assumption that few components are nonzero. We exploit further the sparse nature of the signals and propose a two st...
متن کاملSparse 2D Fast Fourier Transform
This paper extends the concepts of the Sparse Fast Fourier Transform (sFFT) Algorithm introduced in [1] to work with two dimensional (2D) data. The 2D algorithm requires several generalizations to multiple key concepts of the 1D sparse Fourier transform algorithm. Furthermore, several parameters needed in the algorithm are optimized for the reconstruction of sparse image spectra. This paper add...
متن کاملSpectral Compressive Sensing
Compressive sensing (CS) is a new approach to simultaneous sensing and compression of sparse and compressible signals. A great many applications feature smooth or modulated signals that can be modeled as a linear combination of a small number of sinusoids; such signals are sparse in the frequency domain. In practical applications, the standard frequency domain signal representation is the discr...
متن کامل