Similarities between somatic cells overexpressing the mos oncogene and oocytes during meiotic interphase.
نویسندگان
چکیده
The mos protooncogene encodes a serine/threonine kinase and is a key regulator of oocyte meiotic maturation. After acute infection of Swiss 3T3 cells with virus containing the v-mos oncogene, cells expressing high levels of v-Mos round up and detach from the monolayer (floating cells), while cells that remain attached express 10-fold lower levels of v-Mos and are transformed. The floating cells are growth arrested with their chromosomes partially condensed in the absence of histone H1 kinase activity, while mitogen-activated protein kinase activity is very high. Collectively, these properties are similar to properties observed in maturing oocytes between meiosis I and II. In v-mos-transformed cell populations, mitogen-activated protein kinase activity is also elevated, correlating with the degree of morphological transformation and the level of Mos expression. Moreover, phosphoprotein modifications specific for M are found in both the floating cells and in v-mos-transformed cells, regardless of their cell cycle stage. One explanation for both morphological transformation and the phenotypes of the floating cells is that Mos imposes a meiotic program on different stages of the somatic cell cycle. The extent of this meiotic phenotype is proportional to the level of v-Mos expression. These results suggest that both morphological transformation and the phenotypes of the floating cells induced by Mos in Swiss 3T3 cells are related to its normal activities during oocyte maturation.
منابع مشابه
Mos is required for MAP kinase activation and is involved in microtubule organization during meiotic maturation in the mouse.
Mos is normally expressed during oocyte meiotic maturation in vertebrates. However, apart from its cytostatic factor (CSF) activity, its precise role during mouse meiosis is still unknown. First, we analyzed its role as a MAP kinase kinase kinase. Mos is synthesized concomitantly with the activation of MAP kinase in mouse oocytes. Moreover, MAP kinase is not activated during meiosis in oocytes ...
متن کاملA characterization of cytostatic factor activity from Xenopus eggs and c-mos-transformed cells
In Xenopus oocytes, the mos proto-oncogene product is required during meiosis I for the activation of maturation promoting factor (MPF) and the subsequent breakdown of the germinal vesicle (GVBD). In addition, the mos product has been shown to be a candidate "initiator" of meiotic maturation and is an active component of cytostatic factor (CSF), an activity responsible for metaphase II arrest. ...
متن کاملNucleo-cytoplasmic interactions in cell hybrids between mouse oocytes, blastomeres and somatic cells.
With the help of the technique of Sendai virus-mediated cell fusion, hybrid cells were produced between two maturing oocytes, between maturing oocytes or mature secondary oocytes and interphase blastomeres from 2-cell embryos, and between secondary oocytes and follicle cells (FC). In the first case giant oocytes form and in these the two groups of condensing bivalents join on a common spindle, ...
متن کاملMeiotic spindle stability depends on MAPK-interacting and spindle-stabilizing protein (MISS), a new MAPK substrate
Vertebrate oocytes arrest in the second metaphase of meiosis (metaphase II [MII]) by an activity called cytostatic factor (CSF), with aligned chromosomes and stable spindles. Segregation of chromosomes occurs after fertilization. The Mos/.../MAPK (mitogen-activated protein kinases) pathway mediates this MII arrest. Using a two-hybrid screen, we identified a new MAPK partner from a mouse oocyte ...
متن کاملThe spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes
In Xenopus oocytes, the spindle assembly checkpoint (SAC) kinase Bub1 is required for cytostatic factor (CSF)-induced metaphase arrest in meiosis II. To investigate whether matured mouse oocytes are kept in metaphase by a SAC-mediated inhibition of the anaphase-promoting complex/cyclosome (APC/C) complex, we injected a dominant-negative Bub1 mutant (Bub1dn) into mouse oocytes undergoing meiosis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research
دوره 5 10 شماره
صفحات -
تاریخ انتشار 1994