4-Engel Groups are Locally Nilpotent
نویسندگان
چکیده
Questions about nilpotency of groups satisfying Engel conditions have been considered since 1936, when Zorn proved that finite Engel groups are nilpotent. We prove that 4-Engel groups are locally nilpotent. Our proof makes substantial use of both hand and machine calculations.
منابع مشابه
Results on Engel Fuzzy Subgroups
In the classical group theory there is an open question: Is every torsion free n-Engel group (for n ≥ 4), nilpotent?. To answer the question, Traustason [11] showed that with some additional conditions all 4-Engel groups are locally nilpotent. Here, we gave some partial answer to this question on Engel fuzzy subgroups. We show that if μ is a normal 4-Engel fuzzy subgroup of ...
متن کاملA Note on The Local Nilpotence of 4-Engel Groups
Recently Havas and Vaughan-Lee proved that 4-Engel groups are locally nilpotent. Their proof relies on the fact that a certain 4-Engel group T is nilpotent and this they prove using a computer and the Knuth-Bendix algorithm. In this paper we give a short hand-proof of the nilpotency of T .
متن کاملGroup rings satisfying generalized Engel conditions
Let R be a commutative ring with unity of characteristic r≥0 and G be a locally finite group. For each x and y in the group ring RG define [x,y]=xy-yx and inductively via [x ,_( n+1) y]=[[x ,_( n) y] , y]. In this paper we show that necessary and sufficient conditions for RG to satisfies [x^m(x,y) ,_( n(x,y)) y]=0 is: 1) if r is a power of a prime p, then G is a locally nilpotent group an...
متن کاملComputing with 4-engel Groups
We have proved that 4-Engel groups are locally nilpotent. The proof is based upon detailed computations by both hand and machine. Here we elaborate on explicit computer calculations which provided some of the motivation behind the proof. In particular we give details on the hardest coset enumerations now required to show in a direct proof that 4-Engel p-groups are locally finite for 5 ≤ p ≤ 31....
متن کاملOn Groups admitting a Word whose Values are Engel
Let m,n be positive integers, v a multilinear commutator word and w = vm. We prove that if G is a residually finite group in which all wvalues are n-Engel, then the verbal subgroup w(G) is locally nilpotent. We also examine the question whether this is true in the case where G is locally graded rather than residually finite. We answer the question affirmatively in the case where m = 1. Moreover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJAC
دوره 15 شماره
صفحات -
تاریخ انتشار 2005