On the Computational Complexity of Betti Numbers: Reductions from Matrix Rank
نویسندگان
چکیده
We give evidence for the difficulty of computing Betti numbers of simplicial complexes over a finite field. We do this by reducing the rank computation for sparse matrices with m non-zero entries to computing Betti numbers of simplicial complexes consisting of at most a constant times m simplices. Together with the known reduction in the other direction, this implies that the two problems have the same computational complexity.
منابع مشابه
On a special class of Stanley-Reisner ideals
For an $n$-gon with vertices at points $1,2,cdots,n$, the Betti numbers of its suspension, the simplicial complex that involves two more vertices $n+1$ and $n+2$, is known. In this paper, with a constructive and simple proof, wegeneralize this result to find the minimal free resolution and Betti numbers of the $S$-module $S/I$ where $S=K[x_{1},cdots, x_{n}]$ and $I$ is the associated ideal to ...
متن کاملOn the computational complexity of finding a minimal basis for the guess and determine attack
Guess-and-determine attack is one of the general attacks on stream ciphers. It is a common cryptanalysis tool for evaluating security of stream ciphers. The effectiveness of this attack is based on the number of unknown bits which will be guessed by the attacker to break the cryptosystem. In this work, we present a relation between the minimum numbers of the guessed bits and uniquely restricted...
متن کاملBetti Number Bounds, Applications and Algorithms
Topological complexity of semialgebraic sets in R has been studied by many researchers over the past fifty years. An important measure of the topological complexity are the Betti numbers. Quantitative bounds on the Betti numbers of a semialgebraic set in terms of various parameters (such as the number and the degrees of the polynomials defining it, the dimension of the set etc.) have proved use...
متن کاملThe border support rank of two-by-two matrix multiplication is seven
We show that the border support rank of the tensor corresponding to two-by-two matrix multiplication is seven over the complex numbers. We do this by constructing two polynomials that vanish on all complex tensors with format four-by-four-by-four and border rank at most six, but that do not vanish simultaneously on any tensor with the same support as the two-by-two matrix multiplication tensor....
متن کاملWorkshop on Complexity
The complexity classes P, NP, and #P are familiar to a wide segment of the mathematical community. The analogous logspace classes L, NL, and #L, in contrast, are familiar only to the complexity theory community. However, these complexity classes (and their cousins PL, C = L and a few others) provide us with exact characterizations of the complexity of many natural problems in linear algebra, in...
متن کامل