Directing the Differentiation of Parthenogenetic Stem Cells into Tenocytes for Tissue‐Engineered Tendon Regeneration
نویسندگان
چکیده
: Uniparental parthenogenesis yields pluripotent stem cells without the political and ethical concerns surrounding the use of embryonic stem cells (ESCs) for biomedical applications. In the current study, we hypothesized that parthenogenetic stem cells (pSCs) could be directed to differentiate into tenocytes and applied for tissue-engineered tendon. We showed that pSCs displayed fundamental properties similar to those of ESCs, including pluripotency, clonogenicity, and self-renewal capacity. pSCs spontaneously differentiated into parthenogenetic mesenchymal stem cells (pMSCs), which were positive for mesenchymal stem cell surface markers and possessed osteogenic, chondrogenic, and adipogenic potential. Then, mechanical stretch was applied to improve the tenogenic differentiation of pMSCs, as indicated by the expression of tenogenic-specific markers and an increasing COL1A1:3A1 ratio. The pSC-derived tenocytes could proliferate and secrete extracellular matrix on the surface of poly(lactic-co-glycolic) acid scaffolds. Finally, engineered tendon-like tissue was successfully generated after in vivo heterotopic implantation of a tenocyte-scaffold composite. In conclusion, our experiment introduced an effective and practical strategy for applying pSCs for tendon regeneration. SIGNIFICANCE This study examined whether parthenogenetic stem cells exhibited properties similar to ESCs, including pluripotency, clonogenicity, self-renewal, and in vitro and in vivo differentiation capacity. By sequential differentiation of parthenogenetic stem cells (pSCs), parthenogenetic mesenchymal stem cells had been established and further induced through cyclic mechanical stimulation. Cell proliferation, tendon-specific marker, and extracellular matrix-enhanced constructs were assessed in vitro and in vivo. Collectively, the study's data indicated that pSCs are an attractive cell source for tissue-engineered tendon.
منابع مشابه
Force and scleraxis synergistically promote the commitment of human ES cells derived MSCs to tenocytes
As tendon stem/progenitor cells were reported to be rare in tendon tissues, tendons as vulnerable targets of sports injury possess poor self-repair capability. Human ESCs (hESCs) represent a promising approach to tendon regeneration. But their teno-lineage differentiation strategy has yet to be defined. Here, we report that force combined with the tendon-specific transcription factor scleraxis ...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملTendon regeneration and repair with adipose derived stem cells.
Tendon, the crucial element of the musculoskeletal system, when damaged, never restores the biological and biomechanical properties completely. Recently, tissue engineering and regenerative medicine have enabled the differentiation of postnatal somatic stem cells or mesenchymal stem cells (MSCs) to different cell lineages and tissues including tendon. In addition, the MSCs, mainly bone marrow d...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملCol V siRNA Engineered Tenocytes for Tendon Tissue Engineering
The presence of uniformly small collagen fibrils in tendon repair is believed to play a major role in suboptimal tendon healing. Collagen V is significantly elevated in healing tendons and plays an important role in fibrillogenesis. The objective of this study was to investigate the effect of a particular chain of collagen V on the fibrillogenesis of Sprague-Dawley rat tenocytes, as well as the...
متن کامل