Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
نویسندگان
چکیده
BACKGROUND AND AIMS Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. METHODS Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. KEY RESULTS In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. CONCLUSIONS Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.
منابع مشابه
Leaf temperature of soybean grown under elevated CO2 increases Aphis glycines (Hemiptera: Aphididae) population growth
Plants grown under elevated carbon dioxide (CO2) experience physiological changes that influence their suitability as food for insects. To determine the effects of living on soybean (Glycine max Linnaeus) grown under elevated CO2, population growth of the soybean aphid (Aphis glycines Matsumura) was determined at the SoyFACE research site at the University of Illinois, Urbana-Champaign, Illinoi...
متن کاملWater uptake of soybean (Glycine max L. Merr.) during exposure to O2 deficiency and field level CO2 concentration in the root zone
This study determined whether the field level concentration of root zone CO2 affects transpiration rate and root water transport in soybean (Glycine max L. Merr.). In an upland field converted from a paddy field, topsoil CO2 during the cropping season rose to 8 kPa of partial pressure after rainfall, whereas O2 dropped only to a minimum of 7 kPa. An elevated root zone CO2 pressure of 6 kPa sign...
متن کاملLeaf photosynthesis and Rubisco activity and kinetics of soybean , peanut and rice grown under elevated atmospheric CO 2 , supraoptimal air temperature and soil water deficit
Soybean (Glycine max L. Merr. cv. Bragg), peanut (Arachis hypogaea L. cv. Georgia Green) and rice (Oryza saliva L. cv. IR-72) were grown for a full season in sunlit, controlled-environment chambers at 350 (ambient) and 700 (double-ambient, elevated) imol CO2 moF' air, and under daytime maximum/nighttime minimum air temperature regimes ranging from 28/18 to 48/38°C for soybean and peanut, or soi...
متن کاملEffects of environment during growth on the sensitivity of leaf conductance to changes in humidity
Soybeans (Glycine max) and grain amaranth (Amaranthus hypochondriacus) were grown at a range of temperatures, carbon dioxide concentrations and light conditions in controlled environment chambers, and the response of leaf conductance to water vapour to changes in humidity was then measured under a standard set of conditions. The sensitivity of conductance was analysed in terms of (i) the absolu...
متن کاملEffects of environment during growth on the sensitivity of leaf conductance to changes in humidity
Soybeans (Glycine max) and grain amaranth (Amaranthus hypochondriacus) were grown at a range of temperatures, carbon dioxide concentrations and light conditions in controlled environment chambers, and the response of leaf conductance to water vapour to changes in humidity was then measured under a standard set of conditions. The sensitivity of conductance was analysed in terms of (i) the absolu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annals of botany
دوره 112 5 شماره
صفحات -
تاریخ انتشار 2013