Sparse least mean fourth filter with zero-attracting ℓ1-norm constraint
نویسندگان
چکیده
Traditional stable adaptive filter was used normalized least-mean square (NLMS) algorithm. However, identification performance of the traditional filter was especially vulnerable to degradation in low signal-noise-ratio (SRN) regime. Recently, adaptive filter using normalized least-mean fourth (NLMF) is attracting attention in adaptive system identifications (ASI) due to its high identification performance and stability. In the case of sparse system, however, the NLMF filter cannot identify effectively due to the fact that its algorithm neglects the inherent sparse structure. In this paper, we proposed a sparse NLMF filter using zero-attracting -norm constraint to exploit the sparsity and to improve the identification performance. Effectiveness of the proposed filter is confirmed from two aspects: 1) stability is derived equivalent to well-known stable NLMS filter; 2) identification performance of the proposed is verified by mean square deviation (MSD) standard in computer simulations. When comparing with conventional adaptive filter, the proposed one can achieve much better identification performance especially in low SNR regime. Keywords—normalized least-mean square (NLMS), normalized least-mean fourth (NLMF), zero-attracting -norm constraint normalized least-mean fourth (ZAC-NLMF), adaptive filter, sparse system identification.
منابع مشابه
Least Mean Square/Fourth Algorithm with Application to Sparse Channel Estimation
Broadband signal transmission over frequencyselective fading channel often requires accurate channel state information at receiver. One of the most attracting adaptive channel estimation methods is least mean square (LMS) algorithm. However, LMS-based method is often degraded by random scaling of input training signal. To improve the estimation performance, in this paper we apply the standard l...
متن کاملExtra Gain: Improved Sparse Channel Estimation Using Reweighted l_1-norm Penalized LMS/F Algorithm
The channel estimation is one of important techniques to ensure reliable broadband signal transmission. Broadband channels are often modeled as a sparse channel. Comparing with traditional dense-assumption based linear channel estimation methods, e.g., least mean square/fourth (LMS/F) algorithm, exploiting sparse structure information can get extra performance gain. By introducing -norm penalty...
متن کاملLeast Mean Square Algorithm with Application to Improved Adaptive Sparse Channel Estimation
Least mean square (LMS) based adaptive algorithms have been attracted much attention since their low computational complexity and robust recovery capability. To exploit the channel sparsity, LMS-based adaptive sparse channel estimation methods, e.g., L1-norm LMS or zero-attracting LMS (sparse LMS or ZA-LMS), reweighted zero attracting LMS (RZA-LMS) and Lp-norm LMS (LP-LMS), have been proposed b...
متن کاملAdaptive sparsity tradeoff for ℓ1-constraint NLMS algorithm
Embedding the l1 norm in gradient-based adaptive filtering is a popular solution for sparse plant estimation. Even though the foundations are well understood, the selection of the sparsity hyper-parameter still remains today matter of study. Supported on the modal analysis of the adaptive algorithm near steady state, this paper shows that the optimal sparsity tradeoff depends on filter length, ...
متن کاملImproved adaptive sparse channel estimation using mixed square/fourth error criterion
Sparse channel estimation problem is one of challenge technical issues in stable broadband wireless communications. Based on square error criterion (SEC), adaptive sparse channel estimation (ASCE) methods, e.g., zero-attracting least mean square error (ZA-LMS) algorithm and reweighted ZA-LMS (RZA-LMS) algorithm, have been proposed to mitigate noise interferences as well as to exploit the inhere...
متن کامل