Concurrent Synthesis and Release of nod-Gene-Inducing Flavonoids from Alfalfa Roots.
نویسندگان
چکیده
Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4',7-dihydroxyflavanone, 4',7-dihydroxyflavone, and 4,4'-dihydroxy-2'-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with [U-(14)C]-l-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor l-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained (14)C. In the presence of AOPP, (14)C labeling and release of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. Experiments with excised cotyledons, hypocotyls, and roots incubated in solution showed that the flavonoids could be synthesized in and released from each organ. However, the ratio of the three flavonoids in exudates from intact plants was most similar to the ratio recently synthesized and released from excised roots. A portion of recently synthesized flavonoid aglycones was found conjugated, presumably as glycosides, in root extracts and may have been involved in the release process. Data from root extracts showed that formononetin, an isoflavonoid which does not induce nod genes, was present in conjugated and aglycone forms but was not released by normal intact roots. In contrast, roots stressed with CuCl(2) did release the aglycone formononetin. Thus, the release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth. The synthesis and specific concurrent release of flavonoid nod-gene inducers in this study is consistent with the physiological requirement for nodule formation of the 3-day-old seedlings used.
منابع مشابه
Chrysoeriol and Luteolin Released from Alfalfa Seeds
Flavonoid signals from alfalfa (Medicago sativa L.) seed and root exudates induce transcription of nodulation (nod) genes in Rhizobium meliloti. The flavone luteolin previously was isolated from alfalfa seeds by other workers and identified as the first nod gene inducer for R. meliloti. Our recent study of 'Moapa 69' alfalfa root exudates found no luteolin but did identify three other nod gene ...
متن کاملChemotaxis of Rhizobium meliloti towards Nodulation Gene-Inducing Compounds from Alfalfa Roots.
Luteolin, a flavone present in seed exudates of alfalfa, induces nodulation genes (nod) in Rhizobium meliloti and also serves as a biochemically specific chemoattractant for the bacterium. The present work shows that R. meliloti RCR2011 is capable of very similar chemotactic responses towards 4',7-dihydroxyflavone, 4',7-Dihydroxyflavanone, and 4,4'-dihydroxy-2-methoxychalcone, the three princip...
متن کاملRelease and Modification of nod-Gene-Inducing Flavonoids from Alfalfa Seeds.
Traces of luteolin, an important rhizobial nod gene inducer in Rhizobium meliloti, are released by alfalfa (Medicago sativa L.) seeds, but most luteolin in the seed exudate is conjugated as luteolin-7-O-glucoside (L7G). Processes affecting the production of luteolin from L7G in seed exudate are poorly understood. Results from this study establish that (a) seed coats are the primary source of fl...
متن کاملInteractions among Flavonoid nod Gene Inducers Released from Alfalfa Seeds and Roots.
Alfalfa (Medicago sativa L.) seeds and roots can create complex rhizosphere effects by releasing flavonoids that induce nodulation (nod) genes in Rhizobium meliloti. Previous reports identified luteolin and 4,4'-dihydroxy-2'-methoxychalcone as strong inducers that are released from seeds and roots, respectively, and 4',7-dihydroxyflavone and 4',7-dihydroxyflavanone as weaker inducers which are ...
متن کاملLipo-chitooligosaccharide Nodulation Signals from Rhizobium meliloti Induce Their Rapid Degradation by the Host Plant Alfalfa.
Extracellular enzymes from alfalfa (Medicago sativa L.) involved in the degradation of nodulation (Nod) factors could be distinguished by their different cleavage specificities and were separated by lectin affinity chromatography. A particular glycoprotein was able to release an acylated lipo-disaccharide from all tested Nod factors having an oligosaccharide chain length of four or five residue...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 93 4 شماره
صفحات -
تاریخ انتشار 1990