Endplate channel block by guanidine derivatives
نویسندگان
چکیده
The effects of the n-alkyl derivatives of guanidine on the frog neuromuscular junction were studied using the two-microelectrode voltage clamp and other electrophysiological techniques. Methyl-, ethyl-, and propylguanidine stimulated the nerve-evoked release of transmitter. However, amyl-and octylguanidine had no apparent presynaptic action. All of the derivatives blocked the postsynaptic response to acetylcholine, the potency sequence being octyl-greater than amyl-greater than propyl-, methyl-greater than ethylguanidine. Methyl- and octylguanidine did not protect the receptor from alpha-bungarotoxin block, suggesting that these compounds do not bind to the receptor but probably block the ionic channel. Methyl-, ethyl-, and propylguanidine shortened inward endplate currents but prolonged outward currents. Amylguanidine prolonged both inward and outward endplate currents, and the currents became biphasic at negative membrane potentials. Octylguanidine increased the rate of decay of endplate currents at all potentials. All of the derivatives blocked inward endplate currents more markedly than outward currents, resulting in a highly nonlinear current-voltage relation. Methyl-, ethyl-, and propylguanidine reversed the voltage dependence of endplate current decay, while amyl-and octylguanidine reduced the voltage dependence of endplate current decay. Octylguanidine appears to block the ionic channel in both the open and the closed state. The block of the open channel follows pseudo-first-order kinetics with a forward rate constant of 4-6 X 10(7) M-1 s-1.
منابع مشابه
Current-dependent block of endplate channels by guanidine derivatives
Methyl- and ethylguanidine block the endplate current in frog muscle. Both derivatives blocked inward-going endplate currents without affecting outward endplate currents. Repetitive stimulation that evoked several inward endplate currents enhanced the block, which suggests that these agents interact with open endplate channels. The relative conductance vs. potential curve exhibited a transition...
متن کاملCation selectivity of acetylcholine-activated ionic channel of frog endplate
Ionic selectivity of the acetylcholine-activated ionic channel of frog endplate membranes to various organic cations has been studied. The ratio of test cation permeability (PX) to sodium permeability (PNa) was estimated by two methods, one based on the measurements in test cation solutions of the amplitude of transient depolarization induced by iontophoretic application of acetylcholine, and t...
متن کاملThe permeability of the endplate channel to organic cations in frog muscle
The relative permeability of endplate channels to many organic cations was determined by reversal-potential criteria. Endplate currents induced by iontophoretic "puffs" of acetylcholine were studied by a Vaseline gap, voltage clamp method in cut muscle fibers. Reversal potential changes were measured as the NaCl of the bathing medium was replaced by salts of organic cations, and permeability ra...
متن کاملMonovalent and divalent cation permeability and block of neuronal nicotinic receptor channels in rat parasympathetic ganglia
Acetylcholine-evoked currents mediated by activation of nicotinic receptors in rat parasympathetic neurons were examined using whole-cell voltage clamp. The relative permeability of the neuronal nicotinic acetylcholine (nACh) receptor channel to monovalent and divalent inorganic and organic cations was determined from reversal potential measurements. The channel exhibited weak selectivity among...
متن کاملGuanidine block of single channel currents activated by acetylcholine
The acetylcholine-activated channel of chick myotube was studied using the patch-clamp method. Single channel current amplitudes were measured between -300 and +250 mV in solutions containing the permeant ions Cs+ and guanidine (G+). G+ has a relative permeability, PG/PCs, of 1.6, but carries no more than half the current that Cs+ does, with an equivalent electrochemical driving force. Experime...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of General Physiology
دوره 77 شماره
صفحات -
تاریخ انتشار 1981