A Weighted-gcv Method for Lanczos-hybrid Regularization
نویسندگان
چکیده
Lanczos-hybrid regularization methods have been proposed as effective approaches for solving largescale ill-posed inverse problems. Lanczos methods restrict the solution to lie in a Krylov subspace, but they are hindered by semi-convergence behavior, in that the quality of the solution first increases and then decreases. Hybrid methods apply a standard regularization technique, such as Tikhonov regularization, to the projected problem at each iteration. Thus, regularization in hybrid methods is achieved both by Krylov filtering and by appropriate choice of a regularization parameter at each iteration. In this paper we describe a weighted generalized cross validation (WGCV) method for choosing the parameter. Using this method we demonstrate that the semi-convergence behavior of the Lanczos method can be overcome, making the solution less sensitive to the number of iterations.
منابع مشابه
Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement
In many image restoration/resolution enhancement applications, the blurring process, i.e., point spread function (PSF) of the imaging system, is not known or is known only to within a set of parameters. We estimate these PSF parameters for this ill-posed class of inverse problem from raw data, along with the regularization parameters required to stabilize the solution, using the generalized cro...
متن کاملA LSQR-type method provides a computationally efficient automated optimal choice of regularization parameter in diffuse optical tomography.
PURPOSE Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. METHODS The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimizati...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملAn Efficient Iterative Approach for Large-Scale Separable Nonlinear Inverse Problems
This paper considers an efficient iterative approach to solve separable nonlinear least squares problems that arise in large scale inverse problems. A variable projection GaussNewton method is used to solve the nonlinear least squares problem, and Tikhonov regularization is incorporated using an iterative Lanczos hybrid scheme. Regularization parameters are chosen automatically using a weighted...
متن کاملOptimal space-varying regularization in iterative image restoration
It has been shown that space-variant regularization in image restoration provides better results than space-invariant regularization. However, the optimal choice of the regularization parameter is usually unknown a priori. In previous work, the generalized cross-validation (GCV) criterion was shown to provide accurate estimates of the optimal regularization parameter. The author introduces a mo...
متن کامل