Preparation of hierarchical mesoporous CaCO3 by a facile binary solvent approach as anticancer drug carrier for etoposide

نویسندگان

  • Haibao Peng
  • Kun Li
  • Ting Wang
  • Jin Wang
  • Jiao Wang
  • Rongrong Zhu
  • Dongmei Sun
  • Shilong Wang
چکیده

To develop a nontoxic system for targeting therapy, a new highly ordered hierarchical mesoporous calcium carbonate nanospheres (CCNSs) as small drug carriers has been synthesized by a mild and facile binary solvent approach under the normal temperature and pressure. The hierarchical structure by multistage self-assembled strategy was confirmed by TEM and SEM, and a possible formation process was proposed. Due to the large fraction of voids inside the nanospheres which provides space for physical absorption, the CCNSs can stably encapsulate the anticancer drug etoposide with the drug loading efficiency as high as 39.7 wt.%, and etoposide-loaded CCNS (ECCNS) nanoparticles can dispersed well in the cell culture. Besides, the drug release behavior investigated at three different pH values showed that the release of etoposide from CCNSs was pH-sensitive. MTT assay showed that compared with free etoposide, ECCNSs exhibited a higher cell inhibition ratio against SGC-7901 cells and also decreased the toxicity of etoposide to HEK 293 T cells. The CLSM image showed that ECCNSs exhibited a high efficiency of intracellular delivery, especially in nuclear invasion. The apoptosis test revealed that etoposide entrapped in CCNSs could enhance the delivery efficiencies of drug to achieve an improved inhibition effect on cell growth. These results clearly implied that the CCNSs are a promising drug delivery system for etoposide in cancer therapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery

The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...

متن کامل

Thiol-functionalized mesoporous silica as nanocarriers for anticancer drug delivery

The present study deals with the synthesis andfunctionalization of mesoporous silica nanoparticles as drug delivery platforms. SBA-15 nanorods with high surface area (1010 m2g-1) were functionalized by post grafting method using 3-mercaptopropyl trimethoxysilane (MPTS). The parent and thiol-functionalized SBA-15 nanorods were used as nanocarriers for an anticancer drug (gemcitabine). The charac...

متن کامل

Toward a facile synthesis of spherical sub-micron mesoporous silica: Effect of surfactant concentration

In this paper, a facile method for preparing sub-micron spherical mesoporous silica by the sol-gel process and cationic surfactant cetyltrimethylammonium bromide (CTAB) as a soft template was reported. Moreover, the effect of surfactant concentration on the specific surface area and the total pore volume was investigated. The specific surface area, pore characteristic, morphology, chemical comp...

متن کامل

Facile and Economic Method for the Preparation of Core-Shell Magnetic Mesoporous Silica

In this work core-shell structure Fe3O4@SiO2@meso-SiO2 microsphere has been successfully prepared. An inorganic magnetic core has been coated with multi-shell structure, dense nonporous silica as an inner layer and mesoporous silica as an outer layer. The dense silica shell can enhance the stability and minimize the negative effect of acidic condi...

متن کامل

Synthesis of CaCO3 Nanobelts for Drug Delivery in Cancer Therapy

Nanobelt carriers have demonstrated some advantages such as good biocompatibility, biodegradability, and strain-accommodating properties. We prepared an optimized nanobelt carrier formulation for drug (etoposide) as an oral delivery system and estimated the potential of calcium carbonate (CaCO3) nanobelts. The nanobelts were prepared by the method of binary solvent approach and were characteriz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013