Using Multivariate Mixed-effects Models to Predict Hypertension
نویسندگان
چکیده
منابع مشابه
Phase II monitoring of auto-correlated linear profiles using linear mixed model
In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...
متن کاملUsing Mixed Models to Determine the Contribution of Land Use and Geology Formation in Erosion and Sediment Yield: A Case Study of Tange Bostanak Watershed in Fars province, Iran
Introduction Many catchment erosion studies focus on formation and land use as the primary source of sediment. It is important to improve information on sediment sources, especially in large catchments and sediment source information which can support catchment management decisions. Erosion control projects need to be understood as the relative contributions of different sediment sources f...
متن کاملUsing emotional intelligence to predict job stress: Artificial neural network and regression models
Introduction: These days, there is a consensus that emotional intelligence plays an important role in the success of individuals in different areas of life. Persons with higher emotional intelligence had lower stress in dealing with demands and pressures in the workplace. The purpose of this study was to use artificial neural network to predict job stress and to compare the performance of this ...
متن کاملMixed-Effects Logistic Regression Models for Indirectly Observed Discrete Outcome Variables.
A well-established approach to modeling clustered data introduces random effects in the model of interest. Mixed-effects logistic regression models can be used to predict discrete outcome variables when observations are correlated. An extension of the mixed-effects logistic regression model is presented in which the dependent variable is a latent class variable. This method makes it possible to...
متن کاملScreening for prostate cancer using multivariate mixed-effects models.
Using several variables known to be related to prostate cancer, a multivariate classification method is developed to predict the onset of clinical prostate cancer. A multivariate mixed-effects model is used to describe longitudinal changes in prostate specific antigen (PSA), a free testosterone index (FTI), and body mass index (BMI) before any clinical evidence of prostate cancer. The patterns ...
متن کامل