Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo.

نویسندگان

  • I R Garrett
  • B F Boyce
  • R O Oreffo
  • L Bonewald
  • J Poser
  • G R Mundy
چکیده

The mechanisms by which bone resorbing osteoclasts form and are activated by hormones are poorly understood. We show here that the generation of oxygen-derived free radicals in cultured bone is associated with the formation of new osteoclasts and enhanced bone resorption, identical to the effects seen when bones are treated with hormones such as parathyroid hormone (PTH) and interleukin 1 (IL-1). When free oxygen radicals were generated adjacent to bone surfaces in vivo, osteoclasts were also formed. PTH and IL-1-stimulated bone resorption was inhibited by both natural and recombinant superoxide dismutase, an enzyme that depletes tissues of superoxide anions. We used the marker nitroblue tetrazolium (NBT) to identify the cells that were responsible for free radical production in resorbing bones. NBT staining was detected only in osteoclasts in cultures of resorbing bones. NBT staining in osteoclasts was decreased in bones coincubated with calcitonin, an inhibitor of bone resorption. We also found that isolated avian osteoclasts stained positively for NBT. NBT staining in isolated osteoclasts was increased when the cells were incubated with bone particles, to which they attach. We confirmed the formation of superoxide anion in isolated avian osteoclasts using ferricytochrome c reduction as a method of detection. The reduction of ferricytochrome c in isolated osteoclasts was inhibited by superoxide dismutase. Our results suggest that oxygen-derived free radicals, and particularly the superoxide anion, are intermediaries in the formation and activation of osteoclasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water-soluble fullerene (C60) inhibits the osteoclast differentiation and bone destruction in arthritis

Recently, it has been demonstrated that oxygen free radicals have an important role as a signaling messenger in the receptor activator NFkappaB (RANK) signal pathway required for osteoclast differentiation. The aim of this study was to examine the potential of a strong free-radical scavenger, water-soluble fullerene (C60), as a protective agent against the RANK-induced osteoclastogenesis and os...

متن کامل

1,25-Dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption.

Although 1,25-dihydroxyvitamin D3 stimulates osteoclastic bone resorption in vivo and in organ culture, the mechanism by which it effects this stimulation is unknown. We have recently found that the agent does not stimulate resorption by osteoclasts mechanically disaggregated from bone and incubated on slices of cortical bone. This suggests that the osteoclasts were removed by disaggregation fr...

متن کامل

Targeted Overexpression of Osteoactivin in Cells of Osteoclastic Lineage Promotes Osteoclastic Resorption and Bone Loss in Mice

This study sought to test whether targeted overexpression of osteoactivin (OA) in cells of osteoclastic lineage, using the tartrate-resistant acid phosphase (TRAP) exon 1B/C promoter to drive OA expression, would increase bone resorption and bone loss in vivo. OA transgenic osteoclasts showed ∼2-fold increases in OA mRNA and proteins compared wild-type (WT) osteoclasts. However, the OA expressi...

متن کامل

P-181: Protective Role of Vitamin E As An Alternative Treatment for Ovariectomized Osteoporotic Rats

Background: Osteoporosis one of the postmenopausal symptoms is characterized by bone loss. There is a link between excessive reactive oxygen species (ROS) formation, estrogen deficiency due to cessation of ovarian function and bone loss. Free radicals are responsible for causing osteoblast apoptosis and reducing osteoblastogenesis in bone remodeling. Vitamin E is a potent antioxidant with the a...

متن کامل

Effects of Nrf2 Deficiency on Bone Microarchitecture in an Experimental Model of Osteoporosis

OBJECTIVE Redox imbalance contributes to bone fragility. We have evaluated the in vivo role of nuclear factor erythroid derived 2-related factor-2 (Nrf2), an important regulator of cellular responses to oxidative stress, in bone metabolism using a model of postmenopausal osteoporosis. METHODS Ovariectomy was performed in both wild-type and mice deficient in Nrf2 (Nrf2(-/-)). Bone microarchite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 85 3  شماره 

صفحات  -

تاریخ انتشار 1990