A Review on High-Speed Machining of Titanium Alloys∗
نویسندگان
چکیده
Titanium alloys have been widely used in the aerospace, biomedical and automotive industries because of their good strength-to-weight ratio and superior corrosion resistance. However, it is very difficult to machine them due to their poor machinability. When machining titanium alloys with conventional tools, the tool wear rate progresses rapidly, and it is generally difficult to achieve a cutting speed of over 60 m/min. Other types of tool materials, including ceramic, diamond, and cubic boron nitride (CBN), are highly reactive with titanium alloys at higher temperature. However, binder-less CBN (BCBN) tools, which do not have any binder, sintering agent or catalyst, have a remarkably longer tool life than conventional CBN inserts even at high cutting speeds. In order to get deeper understanding of high speed machining (HSM) of titanium alloys, the generation of mathematical models is essential. The models are also needed to predict the machining parameters for HSM. This paper aims to give an overview of recent developments in machining and HSM of titanium alloys, geometrical modeling of HSM, and cutting force models for HSM of titanium alloys.
منابع مشابه
Machinability evaluation of Titanium alloy in Laser Assisted Turning
The use of titanium and its alloys has increased in various industries recently, because of their superior properties of these alloys. Titanium alloys are generally classified as difficult to machine materials because of their thermo-mechanical properties such as high strength-to-weight ratio and low thermal conductivity. Laser Assisted Machining (LAM) improves the machinability of high strengt...
متن کاملMachinability evaluation of Titanium alloy in Laser Assisted Turning
The use of titanium and its alloys has increased in various industries recently, because of their superior properties of these alloys. Titanium alloys are generally classified as difficult to machine materials because of their thermo-mechanical properties such as high strength-to-weight ratio and low thermal conductivity. Laser Assisted Machining (LAM) improves the machinability of high strengt...
متن کاملOn High Speed Machining of Titanium Alloys - Analysis and Validation
III ABSTRACT This report documents the steps taken to gain insight into the phenomena of high speed machining (HSM) of titanium alloys. This was done by firstly studying titanium alloys and the problems associated with machining titanium alloys. An experimental set-up and procedure was developed for measuring and recording both the machining temperature and component forces. A sufficient set of...
متن کاملOptimization of Wire Electric Discharge Machining Process Parameters Using Titanium Alloys –A Review
WEDM is one of the important variants of electrical discharge machining (EDM) which uses the thermal energy generated between the electrodes for machining the electrically conducive materials. This method has been successfully implemented in common materials like aluminum, stainless steel etc., But its application in super alloys like Ti6Al4V is still under investigations. This paper reviews th...
متن کاملOn the Physics of Machining Titanium Alloys: Interactions between Cutting Parameters, Microstructure and Tool Wear
The current work deals with the analysis of mechanisms involved during the machining process of titanium alloys. Two different materials were chosen for the study: Ti-6Al-4V and Ti-55531. The objective was to understand the effect of all cutting parameters on the tool wear behavior and stability of the cutting process. The investigations were focused on the mechanisms of the chip formation proc...
متن کامل