Low-Frequency Stimulation of Afferent Ad-Fibers Induces Long- Term Depression at Primary Afferent Synapses with Substantia Gelatinosa Neurons in the Rat
نویسندگان
چکیده
Impulses in primary afferent nerve fibers may produce shortor long-lasting modifications in spinal nociception. Here we have identified a robust long-term depression (LTD) of synaptic transmission in substantia gelatinosa neurons that can be induced by low-frequency stimulation of primary afferent Adfibers. Synaptic transmission between dorsal root afferents and neurons in the substantia gelatinosa of the spinal cord dorsal horn was examined by intracellular recording in a transverse slice dorsal root preparation of rat spinal cord. Conditioning stimulation of dorsal roots with 900 pulses given at 1 Hz (10 V, 0.1 msec) produced LTD of EPSP amplitudes in substantia gelatinosa neurons to 41 6 10% of control that lasted for at least 2 hr. When Aand C-fibers were recruited, conditioning stimulation was as effective as A-fiber stimulation alone. After LTD, synaptic strength could be increased to its original level by applying a second, high-frequency tetanic stimulus to the dorsal root, indicating that LTD is reversible and not attributable to damage of individual synapses. Bath application of the GABAA receptor antagonist bicuculline and glycine receptor antagonist strychnine did not affect LTD. When NMDA receptors were blocked by bath application of D-2-amino-5-phosphonovaleric acid, LTD was abolished or strongly reduced. Loading substantia gelatinosa neurons with Ca chelator BAPTA also blocked or reduced LTD. After incubation of slices with calyculin A, a selective and membrane permeable inhibitor of protein phosphatases 1 and 2A, LTD was not attenuated. We propose that this form of LTD may be relevant for long-lasting segmental antinociception after afferent stimulation.
منابع مشابه
Low-frequency stimulation of afferent Adelta-fibers induces long-term depression at primary afferent synapses with substantia gelatinosa neurons in the rat.
Impulses in primary afferent nerve fibers may produce short- or long-lasting modifications in spinal nociception. Here we have identified a robust long-term depression (LTD) of synaptic transmission in substantia gelatinosa neurons that can be induced by low-frequency stimulation of primary afferent Adelta-fibers. Synaptic transmission between dorsal root afferents and neurons in the substantia...
متن کاملبررسی فعالیت حلقه های گاما دوک عضلانی و α-γ Linkage در دم موش (Rat)
Background and purpose : Muscle spindle is responsible for the control of skeletal muscle fibers function at rest and movement cycle, and is known as servo agent for voluntary movement. Function of this kinetic neceptor is completely dependent on the γ- ring activity would bring activity of la fiber and group ÏÏ spindle muscle afferent. Âlso, there is close functional of muscle relationship b...
متن کاملLong-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord.
Synaptic transmission between dorsal root afferents and neurons in the superficial laminae of the spinal dorsal horn (laminae I-III) was examined by intracellular recording in a transverse slice preparation of rat spinal cord. Brief high-frequency electrical stimulation (300 pulses at 100 Hz) of primary afferent fibers produced a long-term potentiation (LTP) or a long-term depression (LTD) of f...
متن کاملDual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn.
The effects of group I metabotropic glutamate (mGlu) receptors on excitatory transmission in the rat dorsal horn, but mostly substantia gelatinosa, neurons were investigated using conventional intracellular recording in slices. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD), the group I mGlu receptor selective agonist (S)-3, 5-dihydroxyp...
متن کاملPii: S0306-4522(00)00080-4
The synaptic strength between primary afferent Ad-fibers, many of which convey pain-related information, and second order neurons in the spinal dorsal horn can be depressed for prolonged periods of time in a useand N-methyl-d-aspartate receptordependent fashion. Here, we have used a transverse spinal cord slice–dorsal root preparation of young rat to characterize the nature of this form of long...
متن کامل