Inactivation of the Leishmania tarentolae pterin transporter (BT1) and reductase (PTR1) genes leads to viable parasites with changes in folate metabolism and hypersensitivity to the antifolate methotrexate.

نویسندگان

  • Amal El Fadili
  • Christoph Kündig
  • Gaétan Roy
  • Marc Ouellette
چکیده

The protozoan parasite Leishmania is a folate and pterin auxotroph. The main biopterin transporter (BT1) and pterin reductase (PTR1) have already been characterized in Leishmania. In this study, we have succeeded in generating a BT1 and PTR1 null mutant in the same Leishmania tarentolae strain. These cells are viable with growth properties indistinguishable from wildtype cells. However, in response to the inactivation of BT1 and PTR1, at least one of the folate transporter genes was deleted, and the level of the folylpolyglutamate synthetase activity was increased, leading to increased polyglutamylation of both folate and methotrexate (MTX). Secondary events following gene inactivation should be considered when analyzing a phenotype in Leishmania. The BT1/PTR1 null mutant is hypersensitive to MTX, but in a step-by-step fashion, we could induce resistance to MTX in these cells. Several resistance mechanisms were found to co-exist including a reduced folate and MTX accumulation, demonstrating that cells with no measurable biopterin uptake but also greatly reduced folate uptake are viable, despite their auxotrophy for each of these substrates. The resistant cells have also amplified the gene coding for the MTX target dihydrofolate reductase. Finally, we found a marked reduction in MTX polyglutamylation in resistant cells. These studies further highlight the formidable ability of Leishmania cells to bypass the blockage of key metabolic pathways.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major.

Trypanosomatid protozoans depend upon exogenous sources of pteridines (pterins or folates) for growth. A broad spectrum pteridine reductase (PTR1) was recently identified in Leishmania major, whose sequence places it in the short chain alcohol dehydrogenase protein family although its enzymatic activities resemble dihydrofolate reductases. The properties of PTR1 suggested a role in essential pt...

متن کامل

New approaches to Leishmania chemotherapy: pteridine reductase 1 (PTR1) as a target and modulator of antifolate sensitivity.

Leishmania and other trypanosomatid protozoa require reduced pteridines (pterins and folates) for growth, suggesting that inhibition of these pathways could be targeted for effective chemotherapy. This goal has not yet been realized, indicating that pteridine metabolism may be unusual in this lower eukaryote. We have investigated this possibility using both wild type and laboratory-selected ant...

متن کامل

Molecular Cloning, Expression and Enzymatic Assay of Pteridine Reductase 1 from Iranian Lizard Leishmania

Background: Currently, there are no effective vaccines against leishmaniasis, and treatment using pentavalent antimonial drugs is occasionally effective and often toxic for patients. The PTR1 enzyme, which causes antifolate drug resistance in Leishmania parasites encoded by gene pteridine reductase 1 (ptr1). Since Leishmania lacks pteridine and folate metabolism, it cannot synthesize the pterid...

متن کامل

Leishmania major pteridine reductase 1 belongs to the short chain dehydrogenase family: stereochemical and kinetic evidence.

Pteridine reductase 1 (PTR1) is a novel broad spectrum enzyme of pterin and folate metabolism in the protozoan parasite Leishmania. Overexpression of PTR1 confers methotrexate resistance to these protozoa, arising from the enzyme's ability to reduce dihydrofolate and its relative insensitivity to methotrexate. The kinetic mechanism and stereochemical course for the catalyzed reaction confirm PT...

متن کامل

Inhibition of Leishmania major pteridine reductase by 2,4,6-triaminoquinazoline: structure of the NADPH ternary complex.

The structure of Leishmania major pteridine reductase (PTR1) in complex with NADPH and the inhibitor 2,4,6-triaminoquinazoline (TAQ) has been solved in a new crystal form by molecular replacement and refined to 2.6 A resolution. The inhibitor mimics a fragment, the pterin head group, of the archetypal antifolate drug methotrexate (MTX) and exploits similar chemical features to bind in the PTR1 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 279 18  شماره 

صفحات  -

تاریخ انتشار 2004