Strongly minimal expansions of (C,+) definable in o-minimal fields

نویسندگان

  • Assaf Hasson
  • Piotr Kowalski
چکیده

We characterize those functions f : C → C definable in o-minimal expansions of the reals for which the structure (C,+, f) is strongly minimal: such functions must be complex constructible, possibly after conjugating by a real matrix. In particular we prove a special case of the Zilber Dichotomy: an algebraically closed field is definable in certain strongly minimal structures which are definable in an o-minimal field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tame topology over dp-minimal structures

In this paper we develop tame topology over dp-minimal structures equipped with definable uniformities satisfying certain assumptions. Our assumptions are enough to ensure that definable sets are tame: there is a good notion of dimension on definable sets, definable functions are almost everywhere continuous, and definable sets are finite unions of graphs of definable continuous “multi-valued f...

متن کامل

On the Topology of Metric Spaces Definable in o-minimal expansions of fields

We study the topology of metric spaces which are definable in o-minimal expansions of ordered fields. We show that a definable metric space either contains an infinite definable discrete set or is definably homeomorphic to a definable set equipped with its euclidean topology. This implies that a separable metric space which is definable in an o-minimal expansion of the real field is definably h...

متن کامل

Weakly o-minimal nonvaluational structures

A weakly o-minimal structure M = (M,≤,+, . . .) expanding an ordered group (M,≤, +) is called non-valuational iff for every cut 〈C,D〉 of (M,≤) definable in M, we have that inf{y − x : x ∈ C, y ∈ D} = 0. The study of non-valuational weakly o-minimal expansions of real closed fields carried out in [MMS] suggests that this class is very close to the class of o-minimal expansions of real closed fie...

متن کامل

The Euler characteristic of definable groups

We show that in an arbitrary o-minimal structure the following are equivalent: (i) every infinite, definably compact, definably connected definable group G has o-minimal Euler characteristic E(G) zero; (ii) if H is a definable subgroup of a definably compact, definably connected, definable group G such that E(G/H) 6= 0, then G = ∪{gHg−1 : g ∈ G}; (iii) every infinite, definably compact, definab...

متن کامل

On torsion points of locally definable groups in o-minimal structures

In this paper we study the structure of m-torsion points of connected locally definable abelian groups in o-minimal expansions of fields. ∗Supported by the FCT grant SFRH/BPD/6015/2001 while a post-doctoral research fellow at the Mathematical Institute, University of Oxford. MSC: 03C64; 20E99.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006