k-Partite cliques of protein interactions: A novel subgraph topology for functional coherence analysis on PPI networks.
نویسندگان
چکیده
Many studies are aimed at identifying dense clusters/subgraphs from protein-protein interaction (PPI) networks for protein function prediction. However, the prediction performance based on the dense clusters is actually worse than a simple guilt-by-association method using neighbor counting ideas. This indicates that the local topological structures and properties of PPI networks are still open to new theoretical investigation and empirical exploration. We introduce a novel topological structure called k-partite cliques of protein interactions-a functionally coherent but not-necessarily dense subgraph topology in PPI networks-to study PPI networks. A k-partite protein clique is a maximal k-partite clique comprising two or more nonoverlapping protein subsets between any two of which full interactions are exhibited. In the detection of PPI's maximal k-partite cliques, we propose to transform PPI networks into induced K-partite graphs where edges exist only between the partites. Then, we present a maximal k-partite clique mining (MaCMik) algorithm to enumerate maximal k-partite cliques from K-partite graphs. Our MaCMik algorithm is then applied to a yeast PPI network. We observed interesting and unusually high functional coherence in k-partite protein cliques-the majority of the proteins in k-partite protein cliques, especially those in the same partites, share the same functions, although k-partite protein cliques are not restricted to be dense compared with dense subgraph patterns or (quasi-)cliques. The idea of k-partite protein cliques provides a novel approach of characterizing PPI networks, and so it will help function prediction for unknown proteins.
منابع مشابه
A Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملA Combination Method of Centrality Measures and Biological Properties to Improve Detection of Protein Complexes in Weighted PPI Networks
Introduction: In protein-protein interaction networks (PPINs), a complex is a group of proteins that allows a biological process to take place. The correct identification of complexes can help better understanding of the function of cells used for therapeutic purposes, such as drug discoveries. One of the common methods for identifying complexes in the PPINs is clustering, but this study aimed ...
متن کاملUsing Indirect protein-protein Interactions for protein Complex Prediction
Protein complexes are fundamental for understanding principles of cellular organizations. Accurate and fast protein complex prediction from the PPI networks of increasing sizes can serve as a guide for biological experiments to discover novel protein complexes. However, protein complex prediction from PPI networks is a hard problem, especially in situations where the PPI network is noisy. We kn...
متن کاملIncorporating Network Topology Improves Prediction of Protein Interaction Networks from Transcriptomic Data
The reconstruction of protein-protein interaction (PPI) networks from high-throughput experimental data is one of the most challenging problems in bioinformatics. These biological networks have specific topologies defined by the functional and evolutionary relationships between the proteins and the physical limitations imposed on proteins interacting in the three-dimensional space. In this pape...
متن کاملDifferentially Expressed Functional Connectivity Networks with K-partite Graph Topology
Emerging brain network studies suggest that interactions between various distributed neuronal populations may be characterized by an organized complex topological structure. Many brain diseases are associated with altered topological patterns of brain connectivity. Therefore, a key inquiry of connectivity analysis is to identify network-level differentially expressed connections that have low f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 340 شماره
صفحات -
تاریخ انتشار 2014