Counting the spanning trees of the 3-cube using edge slides
نویسنده
چکیده
We give a direct combinatorial proof of the known fact that the 3-cube has 384 spanning trees, using an “edge slide” operation on spanning trees. This gives an answer in the case n = 3 to a question implicitly raised by Stanley. Our argument also gives a bijective proof of the n = 3 case of a weighted count of the spanning trees of the n-cube due to Martin and Reiner.
منابع مشابه
Counting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملThe Edge Slide Graph of the 3-cube
The goal of this paper is to study the spanning trees of the 3-cube by understanding their edge slide graph. A spanning tree of a graph G is a minimal set of edges that connects all vertices. An edge slide occurs in a spanning tree of the 3-cube when a single edge can be slid across a 2-dimensional face to form another spanning tree. The edge slide graph is the graph whose vertices are the span...
متن کاملConstructing edge-disjoint spanning trees in locally twisted cubes
The use of edge-disjoint spanning trees for data broadcasting and scattering problem in networks provides a number of advantages, including the increase of bandwidth and faulttolerance. In this paper, we present an algorithm for constructing n edge-disjoint spanning trees in ann-dimensional locally twisted cube. Since then-dimensional locally twisted cube is regular with the common degree n, th...
متن کاملNUMBER OF SPANNING TREES FOR DIFFERENT PRODUCT GRAPHS
In this paper simple formulae are derived for calculating the number of spanning trees of different product graphs. The products considered in here consists of Cartesian, strong Cartesian, direct, Lexicographic and double graph. For this purpose, the Laplacian matrices of these product graphs are used. Form some of these products simple formulae are derived and whenever direct formulation was n...
متن کاملA Simple Parallel Algorithm for Constructing Independent Spanning Trees on Twisted Cubes∗
In 1989, Zehavi and Itai [46] proposed the following conjecture: a k-connected graph G must possess k independent spanning trees (ISTs for short) with an arbitrary node as the common root. An n-dimensional twisted cube, denoted by TQn, is a variation of hypercubes with connectivity n to achieving some improvements of structure properties. Recently, Yang [42] proposed an algorithm for constructi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 54 شماره
صفحات -
تاریخ انتشار 2012