Pii: S0167-8396(02)00087-0

نویسنده

  • John E. Lavery
چکیده

We investigate C1-smooth univariate curvature-based cubic L1 interpolating splines in Cartesian and polar coordinates. The coefficients of these splines are calculated by minimizing the L1 norm of curvature. We compare these curvature-based cubic L1 splines with second-derivative-based cubic L1 splines and with cubic L2 splines based on the L2 norm of curvature and of the second derivative. In computational experiments in Cartesian coordinates, cubic L1 splines based on curvature preserve the shape of multiscale data well, as do cubic L1 splines based on the second derivative. Cartesian-coordinate cubic L1 splines preserve shape much better than analogous Cartesian-coordinate cubic L2 splines. In computational experiments in polar coordinates, cubic L1 splines based on curvature preserve the shape of multiscale data better than cubic L1 splines based on the second derivative and much better than analogous cubic L2 splines. Extensions to splines in general curvilinear coordinate systems, to bivariate splines in spherical coordinate systems and to nonpolynomial splines are outlined. Published by Elsevier Science B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0167-8396(02)00090-0

This paper gives an algorithm for computing proper polynomial parametrizations for a particular class of curves. This class is characterized by the existence of a polynomial parametrization and by the absence of affine singularities. The algorithm requires O(n3 logn) field operations, where n is the degree of the curve.  2002 Elsevier Science B.V. All rights reserved.

متن کامل

Pii: S0167-8396(02)00164-4

We study the relationship of transformations between Legendre and Bernstein basis. Using the relationship, we present a simple and efficient method for optimal multiple degree reductions of Bézier curves with respect to the L2-norm.  2002 Elsevier Science B.V. All rights reserved.

متن کامل

Refinement operators for triangle meshes

Refinement operators for triangular meshes as used in subdivision schemes or remeshing are discussed. A numbering scheme is presented, covering all refinement operators that (topologically) map vertices onto vertices. Using this characterization, some special properties of n-adic and √ 3-subdivision are easy to see.

متن کامل

Computational and data Grids in large-scale science and engineering

As the practice of science moves beyond the single investigator due to the complexity of the problems that now dominate science, large collaborative and multi-institutional teams are needed to address these problems. In order to support this shift in science, the computing and data handling infrastructure that is essential to most of modern science must also change in order to support this incr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002