Verbal subgroups of hyperbolic groups have infinite width
نویسندگان
چکیده
منابع مشابه
Gidi Amir - The Liouville property for groups acting on rooted trees
This is a summary on verbal subgroups in the groups T(∞, K) and UT(∞, K) of infinite dimensional triangular and unitriangular matrices over a field K, |K| > 2. The characterization of the lattices of verbal subgroups in these groups is presented, and the width of verbal subgroups generated by non-commutators, powers and (generalized) Engel words is given [2, 3, 4]. The groups T(∞, K) and UT(∞, ...
متن کاملSplittings and automorphisms of relatively hyperbolic groups
We study automorphisms of a relatively hyperbolic group G. When G is oneended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtually built out of mapping class groups and subgroups of GLn(Z) fixing certain basis elements. When more general parabolic groups are allowed, these ...
متن کاملThe Width of Verbal Subgroups in the Group of Unitriangular Matrices over a Field
Let K be a field and let UTn(K) and Tn(K) denote the groups of all unitriangular and triangular matrices over field K, respectively. In the paper, the lattices of verbal subgroups of these groups are characterized. Consequently the equalities between certain verbal subgroups and their verbal width are determined. The considerations bring a series of verbal subgroups with exactly known finite wi...
متن کاملWidths of Subgroups
We say that the width of an infinite subgroup H in G is n if there exists a collection of n essentially distinct conjugates of H such that the intersection of any two elements of the collection is infinite and n is maximal possible. We define the width of a finite subgroup to be 0. We prove that a quasiconvex subgroup of a negatively curved group has finite width. It follows that geometrically ...
متن کاملThe Non-amenability of Schreier Graphs for Infinite Index Quasiconvex Subgroups of Hyperbolic Groups
We show that if H is a quasiconvex subgroup of infinite index in a non-elementary hyperbolic group G then the Schreier coset graph for G relative to H is non-amenable.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. London Math. Society
دوره 90 شماره
صفحات -
تاریخ انتشار 2014