Verbal subgroups of hyperbolic groups have infinite width

نویسندگان

  • Alexei G. Myasnikov
  • Andrey Nikolaev
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gidi Amir - The Liouville property for groups acting on rooted trees

This is a summary on verbal subgroups in the groups T(∞, K) and UT(∞, K) of infinite dimensional triangular and unitriangular matrices over a field K, |K| > 2. The characterization of the lattices of verbal subgroups in these groups is presented, and the width of verbal subgroups generated by non-commutators, powers and (generalized) Engel words is given [2, 3, 4]. The groups T(∞, K) and UT(∞, ...

متن کامل

Splittings and automorphisms of relatively hyperbolic groups

We study automorphisms of a relatively hyperbolic group G. When G is oneended, we describe Out(G) using a preferred JSJ tree over subgroups that are virtually cyclic or parabolic. In particular, when G is toral relatively hyperbolic, Out(G) is virtually built out of mapping class groups and subgroups of GLn(Z) fixing certain basis elements. When more general parabolic groups are allowed, these ...

متن کامل

The Width of Verbal Subgroups in the Group of Unitriangular Matrices over a Field

Let K be a field and let UTn(K) and Tn(K) denote the groups of all unitriangular and triangular matrices over field K, respectively. In the paper, the lattices of verbal subgroups of these groups are characterized. Consequently the equalities between certain verbal subgroups and their verbal width are determined. The considerations bring a series of verbal subgroups with exactly known finite wi...

متن کامل

Widths of Subgroups

We say that the width of an infinite subgroup H in G is n if there exists a collection of n essentially distinct conjugates of H such that the intersection of any two elements of the collection is infinite and n is maximal possible. We define the width of a finite subgroup to be 0. We prove that a quasiconvex subgroup of a negatively curved group has finite width. It follows that geometrically ...

متن کامل

The Non-amenability of Schreier Graphs for Infinite Index Quasiconvex Subgroups of Hyperbolic Groups

We show that if H is a quasiconvex subgroup of infinite index in a non-elementary hyperbolic group G then the Schreier coset graph for G relative to H is non-amenable.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2014