Hydraulic constraints on plant gas exchange
نویسنده
چکیده
Stomatal conductance (gs) and transpiration (E) are often positively correlated with the hydraulic conductance of the soil–leaf continuum (ks–l). Interaction between gs and ks–l helps regulate water potential (9) of leaves. When soil and plant 9 decreases during water stress, ks–l decreases. A well-documented cause of the decrease in ks–l is xylem cavitation. The interaction between k and 9 in xylem creates physical limits on the range of 9 and E over which gas exchange can occur. Differences in drought tolerance between species correlate with hydraulic limits. Safety margins from complete hydraulic failure are often small enough to require stomatal regulation of 9 and E. While stomatal regulation avoids complete hydraulic failure, controlled decreases in plant k can be substantial during drought. Decreasing plant k amplifies the effect of water stress on the leaves and effectively increases the sensitivity of the stomatal response to drought. Increased stomatal sensitivity may promote drought survival. © 2000 Elsevier Science B.V. All rights reserved.
منابع مشابه
Hydraulic limits preceding mortality in a piñon-juniper woodland under experimental drought.
Drought-related tree mortality occurs globally and may increase in the future, but we lack sufficient mechanistic understanding to accurately predict it. Here we present the first field assessment of the physiological mechanisms leading to mortality in an ecosystem-scale rainfall manipulation of a piñon-juniper (Pinus edulis-Juniperus monosperma) woodland. We measured transpiration (E) and mode...
متن کاملHigher rates of leaf gas exchange are associated with higher leaf hydrodynamic pressure gradients.
Steady-state leaf gas-exchange parameters and leaf hydraulic conductance were measured on 10 vascular plant species, grown under high light and well-watered conditions, in order to test for evidence of a departure from hydraulic homeostasis within leaves as hydraulic conductance varied across species. The plants ranged from herbaceous crop plants to mature forest trees. Across species, under st...
متن کاملHydraulic failure defines the recovery and point of death in water-stressed conifers.
This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering...
متن کاملLeaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.
Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions rang...
متن کاملThe hydraulic limitation hypothesis revisited.
We proposed the hydraulic limitation hypothesis (HLH) as a mechanism to explain universal patterns in tree height, and tree and stand biomass growth: height growth slows down as trees grow taller, maximum height is lower for trees of the same species on resource-poor sites and annual wood production declines after canopy closure for even-aged forests. Our review of 51 studies that measured one ...
متن کامل