Majorana fermions in equilibrium and in driven cold-atom quantum wires.
نویسندگان
چکیده
We introduce a new approach to create and detect Majorana fermions using optically trapped 1D fermionic atoms. In our proposed setup, two internal states of the atoms couple via an optical Raman transition-simultaneously inducing an effective spin-orbit interaction and magnetic field-while a background molecular BEC cloud generates s-wave pairing for the atoms. The resulting cold-atom quantum wire supports Majorana fermions at phase boundaries between topologically trivial and nontrivial regions, as well as "Floquet Majorana fermions" when the system is periodically driven. We analyze experimental parameters, detection schemes, and various imperfections.
منابع مشابه
Floquet Majorana fermions for topological qubits in superconducting devices and cold-atom systems.
We develop an approach to realizing a topological phase transition and non-Abelian braiding statistics with dynamically induced Floquet Majorana fermions (FMFs). When the periodic driving potential does not break fermion parity conservation, FMFs can encode quantum information. Quasienergy analysis shows that a stable FMF zero mode and two other satellite modes exist in a wide parameter space w...
متن کاملRobustness of Majorana fermion induced fractional Josephson effect in multichannel superconducting wires
It has been shown previously that the coupling between two Majorana end states in single-channel superconducting quantum wires leads to the fractional Josephson effect. However, in realistic experimental conditions, multiple bands of the wires are occupied and the Majorana end states are accompanied by other fermionic end states. This raises the question concerning the robustness of the fractio...
متن کاملDynamical generation of Floquet Majorana flat bands in s-wave superconductors
We present quantum control techniques to engineer flat bands of symmetry-protected Majorana edge modes in s-wave superconductors. Specifically, we show how periodic control may be employed for designing time-independent effective Hamiltonians, which support Floquet Majorana flat bands, starting from equilibrium conditions that are either topologically trivial or only support individual Majorana...
متن کاملManipulating Majorana fermions using supercurrents
Topological insulator edges and spin-orbit-coupled quantum wires in proximity to s-wave superconductors can be tuned through a topological quantum phase transition by a Zeeman field. Here we show that a supercurrent flowing in the s-wave superconductor also drives such a transition. We propose to use this mechanism to generate and manipulate Majorana fermions that localize at domain walls betwe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 106 22 شماره
صفحات -
تاریخ انتشار 2011