The denaturation and degradation of stable enzymes at high temperatures.
نویسندگان
چکیده
Now that enzymes are available that are stable above 100 degrees C it is possible to investigate conformational stability at this temperature, and also the effect of high-temperature degradative reactions in functioning enzymes and the inter-relationship between degradation and denaturation. The conformational stability of proteins depends upon stabilizing forces arising from a large number of weak interactions, which are opposed by an almost equally large destabilizing force due mostly to conformational entropy. The difference between these, the net free energy of stabilization, is relatively small, equivalent to a few interactions. The enhanced stability of very stable proteins can be achieved by an additional stabilizing force which is again equivalent to only a few stabilizing interactions. There is currently no strong evidence that any particular interaction (e.g. hydrogen bonds, hydrophobic interactions) plays a more important role in proteins that are stable at 100 degrees C than in those stable at 50 degrees C, or that the structures of very stable proteins are systematically different from those of less stable proteins. The major degradative mechanisms are deamidation of asparagine and glutamine, and succinamide formation at aspartate and glutamate leading to peptide bond hydrolysis. In addition to being temperature-dependent, these reactions are strongly dependent upon the conformational freedom of the susceptible amino acid residues. Evidence is accumulating which suggests that even at 100 degrees C deamidation and succinamide formation proceed slowly or not at all in conformationally intact (native) enzymes. Whether this is the case at higher temperatures is not yet clear, so it is not known whether denaturation of degradation will set the upper limit of stability for enzymes.
منابع مشابه
Production of Xanthanases by Paenibacillus spp.: Complete Xanthan Degradation and Possible Applications
Background: A number of microorganisms and their enzymes have been reported as xanthan depolymerizers. Paenibacillus species are well-known polysaccharide hydrolyzing bacteria. However, Paenibacillus alginolyticus and Paenibacillus sp.XD are the only species in the genus which are now known to degrade xanthan.Objectives: Complete biodegradation of the xan...
متن کاملThermal behavior of ethylene/1-octene copolymer fractions at high temperatures: Effect of hexyl branch content
In this work, the effect of hexyl branch content on thermal behavior of a fractionated ethylene/1-octene copolymer with emphasis on high temperatures was investigated. The ethylene/1-octene copolymer was carefully fractionated to different fractions with homogenous hexyl branch (HB) content by preparative temperature rising elution fractionation (P-TREF) method. The P-TREF fractions were therma...
متن کاملDigestive alkaline proteases from the Tunisian barbell (Barbus callensis): Characterization and application as a detergent additive, in chicken feather-degradation and as a dehairing agent
Alkaline crude enzymes from the viscera of the Tunisian barbel (Barbus callensis) were extracted and characterized. Proteolytic crude extract from barbel viscera was active and stable in alkaline solution. The optimum pH and temperature were 11.0 and 55 °C, respectively, using casein as a substrate. The crude alkaline protease was extremely stable in the pH range of 5.0-12.0. Zymography activit...
متن کاملDigestive alkaline proteases from the Tunisian barbell (Barbus callensis): Characterization and application as a detergent additive, in chicken feather-degradation and as a dehairing agent
Alkaline crude enzymes from the viscera of the Tunisian barbel (Barbus callensis) were extracted and characterized. Proteolytic crude extract from barbel viscera was active and stable in alkaline solution. The optimum pH and temperature were 11.0 and 55 °C, respectively, using casein as a substrate. The crude alkaline protease was extremely stable in the pH range of 5.0-12.0. Zymography activit...
متن کاملAssaying activity and assessing thermostability of hyperthermophilic enzymes.
1. Introduction There is now a wide variety of intra-and extra-cellular enzymes available from organisms growing above 75°C, and having sufficient stability to allow assay well above this temperature. For some of these enzymes, to assay below even 95°C will involve measurement below the optimal growth temperature for the organism. The purpose of this chapter is to cover practical aspects of enz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 317 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1996