MCOLN1 is a ROS sensor in lysosomes that regulates autophagy
نویسندگان
چکیده
Cellular stresses trigger autophagy to remove damaged macromolecules and organelles. Lysosomes 'host' multiple stress-sensing mechanisms that trigger the coordinated biogenesis of autophagosomes and lysosomes. For example, transcription factor (TF)EB, which regulates autophagy and lysosome biogenesis, is activated following the inhibition of mTOR, a lysosome-localized nutrient sensor. Here we show that reactive oxygen species (ROS) activate TFEB via a lysosomal Ca(2+)-dependent mechanism independent of mTOR. Exogenous oxidants or increasing mitochondrial ROS levels directly and specifically activate lysosomal TRPML1 channels, inducing lysosomal Ca(2+) release. This activation triggers calcineurin-dependent TFEB-nuclear translocation, autophagy induction and lysosome biogenesis. When TRPML1 is genetically inactivated or pharmacologically inhibited, clearance of damaged mitochondria and removal of excess ROS are blocked. Furthermore, TRPML1's ROS sensitivity is specifically required for lysosome adaptation to mitochondrial damage. Hence, TRPML1 is a ROS sensor localized on the lysosomal membrane that orchestrates an autophagy-dependent negative-feedback programme to mitigate oxidative stress in the cell.
منابع مشابه
Lysosome calcium in ROS regulation of autophagy.
Lysosomes, the cell's recycling center, undergo nutrient-sensitive adaptive changes in function and biogenesis, i.e., lysosomal adaptation. We recently discovered that lysosomes also mediate the cell's "survival" response (i.e., autophagy) to oxidative stress through the activation of TFEB (transcription factor EB), a master regulator of lysosome biogenesis and autophagy. MCOLN1/TRPML1, the pri...
متن کاملSNAREd into autophagy
Autophagy is a conserved, intracellular bulk degradation process that mediates the turnover of organelles and longlived proteins. During autophagy, cytoplasmic components and organelles are sequestered in a double-membrane vesicle (the autophagosome) that fuses with the lysosome, thereby delivering its contents for lysosomal degradation. Deregulated autophagy is implicated in cancer and in some...
متن کاملAutophagic dysfunction in mucolipidosis type IV patients
Mutations in Mucolipin 1 (MCOLN1) have been linked to mucolipidosis type IV (MLIV), a lysosomal storage disease characterized by several neurological and ophthalmological abnormalities. It has been proposed that MCOLN1 might regulate transport of membrane components in the late endosomal-lysosomal pathway; however, the mechanisms by which defects of MCOLN1 function result in mental and psychomo...
متن کاملFeast or famine
Lysosomal storage diseases are metabolic disorders characterized by the accumulation of acidic vacuoles, and are usually the consequence of the deficiency of an enzyme responsible for the metabolism of vesicular lipids, proteins or carbohydrates. In contrast, mucolipidosis type IV (MLIV), results from the absence of a vesicular Ca ( 2+) release channel called mucolipin 1/transient receptor pot...
متن کاملThe mucolipidosis IV Ca2+ channel TRPML1 (MCOLN1) is regulated by the TOR kinase
Autophagy is a complex pathway regulated by numerous signalling events that recycles macromolecules and may be perturbed in lysosomal storage disorders (LSDs). During autophagy, aberrant regulation of the lysosomal Ca(2+) efflux channel TRPML1 [transient receptor potential mucolipin 1 (MCOLN1)], also known as MCOLN1, is solely responsible for the human LSD mucolipidosis type IV (MLIV); however,...
متن کامل