High Hydrostatic Pressure Pretreatment of Whey Protein Isolates Improves Their Digestibility and Antioxidant Capacity

نویسندگان

  • Michèle M. Iskandar
  • Larry C. Lands
  • Kebba Sabally
  • Behnam Azadi
  • Brian Meehan
  • Nadir Mawji
  • Cameron D. Skinner
  • Stan Kubow
چکیده

Whey proteins have well-established antioxidant and anti-inflammatory bioactivities. High hydrostatic pressure processing of whey protein isolates increases their in vitro digestibility resulting in enhanced antioxidant and anti-inflammatory effects. This study compared the effects of different digestion protocols on the digestibility of pressurized (pWPI) and native (nWPI) whey protein isolates and the antioxidant and anti-inflammatory properties of the hydrolysates. The pepsin-pancreatin digestion protocol was modified to better simulate human digestion by adjusting temperature and pH conditions, incubation times, enzymes utilized, enzyme-to-substrate ratio and ultrafiltration membrane molecular weight cut-off. pWPI showed a significantly greater proteolysis rate and rate of peptide appearance regardless of digestion protocol. Both digestion methods generated a greater relative abundance of eluting peptides and the appearance of new peptide peaks in association with pWPI digestion in comparison to nWPI hydrolysates. Hydrolysates of pWPI from both digestion conditions showed enhanced ferric-reducing antioxidant power relative to nWPI hydrolysates. Likewise, pWPI hydrolysates from both digestion protocols showed similar enhanced antioxidant and anti-inflammatory effects in a respiratory epithelial cell line as compared to nWPI hydrolysates. These findings indicate that regardless of considerable variations of in vitro digestion protocols, pressurization of WPI leads to more efficient digestion that improves its antioxidant and anti-inflammatory properties.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Ultrasonic and High-Pressure Homogenization Pretreatment on the Enzymatic Hydrolysis and Antioxidant Activity of Yeast Protein Hydrolysate

Protein hydrolysate is highly regarded as a source of naturally occurring antioxidant peptides. The purpose of this study was to investigate the effect of Ultrasonic (Frequency, 20 KHz; Amplitude, 50%; Time, 30 min) and high-pressure homogenization (Power, 1500 bar; Rated flow, 10 dm/h) pretreatmenton the enzymatic hydrolysis and antioxidant properties of yeast protein hydrolysate obtained from...

متن کامل

High hydrostatic pressure pre-treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative stress and IL-8 secretion in intestinal epithelial cells

BACKGROUND High hyperbaric pressure treatment of whey protein isolate (WPI) causes changes in the protein structure that enhances the anti-oxidant and anti-inflammatory effects of WPI. OBJECTIVE The aim of this study was to compare the anti-oxidant and anti-inflammatory effects of pressurized whey protein isolate (pWPI) vs. native WPI (nWPI) hydrolysates in Caco-2 cells exposed to hydrogen pe...

متن کامل

Whey Protein Supplementation is Associated with Antioxidant Markers Following Severe Eccentric Contractions in Obesity

Objective: Intense muscle contractions are associated with oxidative stress and immune system deficiency, especially in the presence of obesity. This study aimed to determine the effect of whey protein supplementation following eccentric resistance contractions on some determinants of oxidative stress in non-athletic obese students. Materials and Methods: In this double blinded randomized clin...

متن کامل

Clinical Potential of Hyperbaric Pressure-Treated Whey Protein

Whey protein (WP) from cow's milk is a rich source of essential and branched chain amino acids. Whey protein isolates (WPI) has been demonstrated to support muscle accretion, antioxidant activity, and immune modulation. However, whey is not readily digestible due to its tight conformational structure. Treatment of WPI with hyperbaric pressure results in protein unfolding. This enhances protein ...

متن کامل

Parametric study of nonlinear buckling capacity of short cylinders with Hemispherical heads under hydrostatic pressure

This study investigates the buckling behavior of short cylindrical shells with hemi-spherical heads subjected to hydrostatic pressure. It is assumed that the length of the cylindrical part is smaller than or equal to its diameter while its material may be dif-ferent from that of hemispherical heads. Finite element analysis was used to seek out the effect of geometric parameters such as thicknes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2015