On Rooted Directed Path Graphs
نویسندگان
چکیده
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. An asteroidal quadruple is a stable set of four vertices such that any three of them is an asteroidal triple. Two non adjacent vertices are linked by a special connection if either they have a common neighbor or they are the endpoints of two vertex-disjoint chordless paths satisfying certain technical conditions. Cameron, Hoàng, and Lévêque [DIMAP Workshop on Algorithmic Graph Theory, 67–74, Electron. Notes Discrete Math., 32, Elsevier, 2009] proved that if a pair of non adjacent vertices are linked by a special connection then in any directed path model T the subpaths of T corresponding to the vertices forming the special connection have to overlap and they force T to be completely directed in one direction between these vertices. Special connections along with the concept of asteroidal quadruple play an important role to study rooted directed path graphs, which are the intersection graphs of directed paths in a rooted directed tree. In this work we define other special connections; these special connections along with the ones defined by Cameron, Hoàng, and Lévêque are nine in total, and we prove that every one forces T to be completely directed in one direction between these vertices. Also, we give a characterization of rooted directed path graphs whose rooted models cannot be rooted on a bold maximal clique. As a by-product of our result, we build new forbidden induced subgraphs for rooted directed path graphs.
منابع مشابه
Asteroidal quadruples in non rooted path graphs
A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to ...
متن کاملNP-Completeness of Hamiltonian Cycle Problem on Rooted Directed Path Graphs
The Hamiltonian cycle problem is to decide whether a given graph has a Hamiltonian cycle. Bertossi and Bonuccelli (1986, Information Processing Letters, 23, 195200) proved that the Hamiltonian Cycle Problem is NP-Complete even for undirected path graphs and left the Hamiltonian cycle problem open for directed path graphs. Narasimhan (1989, Information Processing Letters, 32, 167-170) proved tha...
متن کاملAsteroids in rooted and directed path graphs
An asteroidal triple is a stable set of three vertices such that each pair is connected by a path avoiding the neighborhood of the third vertex. Asteroidal triples play a central role in a classical characterization of interval graphs by Lekkerkerker and Boland. Their result says that a chordal graph is an interval graph if and only if it contains no asteroidal triple. In this paper, we prove a...
متن کاملForbidden subgraph characterization of extended star directed path graphs that are not rooted directed path graphs
An asteroidal triple in a graph is a set of three non-adjacent vertices such that for any two of them there exists a path between them that does not intersect the neighborhood of the third. An asteroidal quadruple is a set of four non-adjacent vertices such that any three of them is an asteroidal triple. In this paper, we study a subclass of directed path graph, the class of extended star direc...
متن کامل)-time algorithm for computing the K-terminal reliability of rooted directed path graphs
Let G denote a graph, and KV(G) represent a set of target vertices. Assume that the non-target vertices of G fail independently with given probabilities. The K-terminal reliability of G is defined as the probability that all target vertices in K are connected. Computing K-terminal reliability is #P-complete for general graphs, yet solvable in polynomial time for interval graphs. This work prop...
متن کامل