Hurst Index of Functions of Long-Range-Dependent Markov Chains
نویسندگان
چکیده
A positive recurrent, aperiodic Markov chain is said to be long range dependent (LRD) when the indicator function of a particular state is LRD. This happens if and only if the return time distribution for that state has infinite variance. We investigate the question of whether other instantaneous functions of the Markov chain also inherit this property. We provide conditions under which the function has the same degree of long range dependence as the chain itself. We illustrate our results through three examples in diverse fields: queuing networks, source compression, and finance.
منابع مشابه
Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملSuperposition of Markov sources and long range dependence
This paper introduces a model to study the phenomenon of long range dependence. This model consists of an infinite superposition of independent Markovian ON/OFF– sources. A condition for assuring long range dependence is given and the Hurst parameter together with the correlation decay is derived for a specific example. We also give a physical interpretation of the existing long range dependenc...
متن کاملAnomalous Threshold Behavior of Long Range Random Walks
We consider weighted graphs satisfying sub-Gaussian estimate for the natural random walk. On such graphs, we study symmetric Markov chains with heavy tailed jumps. We establish a threshold behavior of such Markov chains when the index governing the tail heaviness (or jump index) equals the escape time exponent (or walk dimension) of the sub-Gaussian estimate. In a certain sense, this generalize...
متن کاملPossibility between earthquake and explosion seismogram differentiation by discrete stochastic non-Markov processes and local Hurst exponent analysis.
The basic scientific point of this paper is to draw the attention of researchers to new possibilities of differentiation of similar signals having different nature. One example of such kinds of signals is presented by seismograms containing recordings of earthquakes (EQ's) and technogenic explosions (TE's). EQ's are among the most dramatic phenomena in nature. We propose here a discrete stochas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Probability
دوره 49 شماره
صفحات -
تاریخ انتشار 2012