Now I am ready-now i am not: The influence of pre-TMS oscillations and corticomuscular coherence on motor-evoked potentials.
نویسندگان
چکیده
There is a growing body of research on the functional role of oscillatory brain activity. However, its relation to functional connectivity has remained largely obscure. In the sensorimotor system, movement-related changes emerge in the α (8-14 Hz) and β (15-30 Hz) range (event-related desynchronization, ERD, before and during movement; event-related synchronization, ERS, after movement offset). Some studies suggest that β-ERS may functionally inhibit new movements. According to the gating-by-inhibition framework ( Jensen and Mazaheri 2010), we expected that the ERD would go along with increased corticomuscular coupling, and vice versa. By combining transcranial magnetic stimulation (TMS) and electroencephalography, we were directly able to test this hypothesis. In a reaction time task, single TMS pulses were delivered randomly during ERD/ERS to the motor cortex. The motor-evoked potential (MEP) was then related to the β and α frequencies and corticomuscular coherence. Results indicate that MEPs are smaller when preceded by high pre-TMS β-band power and low pre-TMS α-band corticomuscular coherence (and vice versa) in a network of motor-relevant areas comprising frontal, parietal, and motor cortices. This confirms that an increase in rhythms that putatively reflect functionally inhibited states goes along with weaker coupling of the respective brain regions.
منابع مشابه
Cortical brain states and corticospinal synchronization influence TMS-evoked motor potentials.
Transcranial magnetic stimulation (TMS) influences cortical processes. Recent findings indicate, however, that, in turn, the efficacy of TMS depends on the state of ongoing cortical oscillations. Whereas power and phase of electromyographic (EMG) activity recorded from the hand muscles as well as neural synchrony between cortex and hand muscles are known to influence the effect of TMS, to date,...
متن کاملCortical Brain States and Corticospinal Synchronization
35 Transcranial magnetic stimulation (TMS) influences cortical processes. Recent findings 36 indicate however that, in turn, the efficacy of TMS depends on the state of ongoing 37 cortical oscillations. Whereas power and phase of electromyographic (EMG) activity 38 recorded from the hand muscles as well as neural synchrony between cortex and hand 39 muscles are known to influence the effect of ...
متن کاملInter-pulse Interval Affects the Size of Single-pulse TMS-induced Motor Evoked Potentials: a Reliability Study
Introduction: Measuring the size of motor evoked potentials (MEPs) induced by transcranial magnetic stimulation (TMS) is an investigational technique to show the level of corticospinal excitability however, some of the fundamental methodological aspects of TMS (such as the effects of inter-pulse intervals (IPI) on MEP size) are not fully understood, this issue raises concerns about the re...
متن کاملReliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal
Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...
متن کاملPre-stimulus Alpha Oscillations and Inter-subject Variability of Motor Evoked Potentials in Single- and Paired-Pulse TMS Paradigms
Inter- and intra-subject variability of the motor evoked potentials (MEPs) to TMS is a well-known phenomenon. Although a possible link between this variability and ongoing brain oscillations was demonstrated, the results of the studies are not consistent with each other. Exploring this topic further is important since the modulation of MEPs provides unique possibility to relate oscillatory cort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 24 7 شماره
صفحات -
تاریخ انتشار 2014