Rényi Divergence and Kullback-Leibler Divergence
نویسندگان
چکیده
Rényi divergence is related to Rényi entropy much like Kullback-Leibler divergence is related to Shannon’s entropy, and comes up in many settings. It was introduced by Rényi as a measure of information that satisfies almost the same axioms as Kullback-Leibler divergence, and depends on a parameter that is called its order. In particular, the Rényi divergence of order 1 equals the Kullback-Leibler divergence. We review and extend the most important properties of Rényi divergence and Kullback-Leibler divergence, including convexity, continuity, limits of σ-algebras and the relation of the special order 0 to the Gaussian dichotomy and contiguity. We also show how to generalize the Pythagorean inequality to orders different from 1, and we extend the known equivalence between channel capacity and minimax redundancy to continuous channel inputs (for all orders) and present several other minimax results.
منابع مشابه
Rényi divergence and majorization
Rényi divergence is related to Rényi entropy much like information divergence (also called Kullback-Leibler divergence or relative entropy) is related to Shannon’s entropy, and comes up in many settings. It was introduced by Rényi as a measure of information that satisfies almost the same axioms as information divergence. We review the most important properties of Rényi divergence, including it...
متن کاملModel Confidence Set Based on Kullback-Leibler Divergence Distance
Consider the problem of estimating true density, h(.) based upon a random sample X1,…, Xn. In general, h(.)is approximated using an appropriate in some sense, see below) model fƟ(x). This article using Vuong's (1989) test along with a collection of k(> 2) non-nested models constructs a set of appropriate models, say model confidence set, for unknown model h(.).Application of such confide...
متن کاملRényi divergence measures for commonly used univariate continuous distributions
Probabilistic ‘distances’ (also called divergences), which in some sense assess how ‘close’ two probability distributions are from one another, have been widely employed in probability, statistics, information theory, and related fields. Of particular importance due to their generality and applicability are the Rényi divergence measures. This paper presents closed-form expressions for the Rényi...
متن کاملInformation Measures via Copula Functions
In applications of differential geometry to problems of parametric inference, the notion of divergence is often used to measure the separation between two parametric densities. Among them, in this paper, we will verify measures such as Kullback-Leibler information, J-divergence, Hellinger distance, -Divergence, … and so on. Properties and results related to distance between probability d...
متن کاملOn Rényi Divergence Measures for Continuous Alphabet Sources
The idea of ‘probabilistic distances’ (also called divergences), which in some sense assess how ‘close’ two probability distributions are from one another, has been widely employed in probability, statistics, information theory, and related fields. Of particular importance due to their generality and applicability are the Rényi divergence measures. While the closely related concept of Rényi ent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 60 شماره
صفحات -
تاریخ انتشار 2014