Robust Transformations and Outlier Detection with Autocorrelated Data

نویسندگان

  • Andrea Cerioli
  • Marco Riani
چکیده

The analysis of regression data is often improved by using a transformation of the response rather than the original response itself. However, finding a suitable transformation can be strongly affected by the influence of a few individual observations. Outliers can have an enormous impact on the fitting of statistical models and can be hard to detect due to masking and swamping. These difficulties are enhanced in the case of models for dependent observations, since any anomalies are with respect to the specific autocorrelation structure of the model. In this paper we develop a forward search approach which is able to robustly estimate the Box-Cox transformation parameter under a first-order spatial autoregression model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection for Support Vector Machine using Minimum Covariance Determinant Estimator

The purpose of this paper is to identify the effective points on the performance of one of the important algorithm of data mining namely support vector machine. The final classification decision has been made based on the small portion of data called support vectors. So, existence of the atypical observations in the aforementioned points, will result in deviation from the correct decision. Thus...

متن کامل

Control chart based on residues: Is a good methodology to detect outliers?

The purpose of this article is to evaluate the application of forecasting models along with the use of residual control charts to assess production processes whose samples have autocorrelation characteristics. The main objective is to determine the efficiency of control charts for individual observations (CCIO) and exponentially weighted moving average (EWMA) charts when they are applied to res...

متن کامل

Outlier detection for compositional data using robust methods

Outlier detection based on the Mahalanobis distance (MD) requires an appropriate transformation in case of compositional data. For the family of logratio transformations (additive, centered and isometric logratio transformation) it is shown that the MDs based on classical estimates are invariant to these transformations, and that the MDs based on affine equivariant estimators of location and co...

متن کامل

Simultaneous robust estimation of multi-response surfaces in the presence of outliers

A robust approach should be considered when estimating regression coefficients in multi-response problems. Many models are derived from the least squares method. Because the presence of outlier data is unavoidable in most real cases and because the least squares method is sensitive to these types of points, robust regression approaches appear to be a more reliable and suitable method for addres...

متن کامل

Application of Outlier Robust Nonlinear Mixed Effect Estimation in Examining the Effect of Phenylephrine in Rat Corpus Cavernosum

Ignoring two main characteristics of the concentration-response data, correlation between observations and presence of outliers, may lead to misleading results. Therefore the special method should be considered. In this paper in to examine the effect of phenylephrine in rat Corpus cavernosum, outlier robust nonlinear mixed estimation is used. in this study, eight different doses of phenylephrin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005