Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.

نویسندگان

  • Christophe Letondor
  • Nicolas Humbert
  • Thomas R Ward
چکیده

Most physiological and biotechnological processes rely on molecular recognition between chiral (handed) molecules. Manmade homogeneous catalysts and enzymes offer complementary means for producing enantiopure (single-handed) compounds. As the subtle details that govern chiral discrimination are difficult to predict, improving the performance of such catalysts often relies on trial-and-error procedures. Homogeneous catalysts are optimized by chemical modification of the chiral environment around the metal center. Enzymes can be improved by modification of gene encoding the protein. Incorporation of a biotinylated organometallic catalyst into a host protein (avidin or streptavidin) affords versatile artificial metalloenzymes for the reduction of ketones by transfer hydrogenation. The boric acid.formate mixture was identified as a hydrogen source compatible with these artificial metalloenzymes. A combined chemo-genetic procedure allows us to optimize the activity and selectivity of these hybrid catalysts: up to 94% (R) enantiomeric excess for the reduction of p-methylacetophenone. These artificial metalloenzymes display features reminiscent of both homogeneous catalysts and enzymes.

منابع مشابه

Artificial metalloenzymes for enantioselective catalysis based on the noncovalent incorporation of organometallic moieties in a host protein.

Enzymatic and homogeneous catalysis offer complementary means to produce enantiopure products. Incorporation of achiral, biotinylated aminodiphosphine-rhodium complexes in (strept)avidin affords enantioselective hydrogenation catalysts. A combined chemogenetic procedure allows the optimization of the activity and the selectivity of such artificial metalloenzymes: the reduction of acetamidoacryl...

متن کامل

Second Generation Artificial Hydrogenases Based on the Biotin-Avidin Technology: Improving Activity, Stability and Selectivity by Introduction of Enantiopure Amino Acid Spacers

We report on our efforts to create efficient artificial metalloenzymes for the enantioselective hydrogenation of N-protected dehydroamino acids using either avidin or streptavidin as host proteins. Introduction of chiral amino acid spacers – phenylalanine or proline – between the biotin anchor and the flexible aminodiphosphine moiety 1, combined with saturation mutagenesis at position S112X of ...

متن کامل

Chemical optimization of artificial metalloenzymes based on the biotin-avidin technology: (S)-selective and solvent-tolerant hydrogenation catalysts via the introduction of chiral amino acid spacers.

Incorporation of biotinylated-[rhodium(diphosphine)]+ complexes, with enantiopure amino acid spacers, in streptavidin affords solvent-tolerant and selective artificial metalloenzymes: up to 91% ee (S) in the hydrogenation of N-protected dehydroamino acids.

متن کامل

Enantioselective transfer hydrogenation of ketone catalysed by artificial metalloenzymes derived from bovine β-lactoglobulin.

Artificial metalloproteins resulting from the embedding of half-sandwich Ru(II)/Rh(III) fatty acid derivatives within β-lactoglobulin catalysed the asymmetric transfer hydrogenation of trifluoroacetophenone with modest to good conversions and fair ee's.

متن کامل

Artificial metalloenzymes for olefin metathesis based on the biotin-(strept)avidin technology.

Incorporation of a biotinylated Hoveyda-Grubbs catalyst within (strept)avidin affords artificial metalloenzymes for the ring-closing metathesis of N-tosyl diallylamine in aqueous solution. Optimization of the performance can be achieved either by chemical or genetic means.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 13  شماره 

صفحات  -

تاریخ انتشار 2005