Compression of ultra-long microwave pulses using programmable microwave photonic phase filtering with > 100 complex-coefficient taps.

نویسندگان

  • Minhyup Song
  • Victor Torres-Company
  • Rui Wu
  • Andrew J Metcalf
  • Andrew M Weiner
چکیده

Microwave photonic filters with arbitrary phase response can be achieved by merging high-repetition-rate electro-optic frequency comb technology with line-by-line pulse shaping. When arranged in an interferometric configuration, the filter features a number of programmable complex-coefficient taps equal to the number of available comb lines. In this work, we use an ultrabroadband comb generator resulting in a microwave photonic phase filter with >100 complex-coefficient taps. We demonstrate the potential of this filter by performing programmable chirp control of ultrawideband waveforms that extend over long (>10 ns) temporal apertures. This work opens new possibilities for compensating realistic linear distortion impairments on ultrabroadband wireless signals spanning over dozens of nanosecond temporal apertures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping.

We present a programmable multitap microwave photonic filter with an arbitrary phase response operating over a broad bandwidth. Complex coefficient taps are achieved by optical line-by-line pulse shaping on a 10 GHz flat optical frequency comb using a novel interferometric scheme. Through high-speed real-time measurements, we demonstrate programmable chirp control of a waveform via phase filter...

متن کامل

Simultaneous broadband microwave downconversion and programmable complex filtering by optical frequency comb shaping.

High-repetition-rate optical frequency combs can act as broadband photonic mixers and downconvert a microwave signal to an intermediate frequency (IF) band so that it becomes accessible with high-speed electronics. In this Letter, we show that with line-by-line pulse shaping and dispersive propagation, the photonic mixer can simultaneously perform programmable multitap complex-coefficient-filte...

متن کامل

Tunable complex-valued multi-tap microwave photonic filter based on single silicon-on-insulator microring resonator.

A complex-valued multi-tap tunable microwave photonic filter based on single silicon-on-insulator microring resonator is presented. The degree of tunability of the approach involving two, three and four taps is theoretical and experimentally characterized, respectively. The constraints of exploiting the optical phase transfer function of a microring resonator aiming at implementing complex-valu...

متن کامل

Highly reconfigurable microwave photonic single-bandpass filter with complex continuous-time impulse responses.

We propose a novel structure of complex-tap microwave photonic filter (MPF) employing an incoherent broadband optical source (BOS) and a programmable optical spectrum processor. By tailoring the optical spectral amplitude and phase, arbitrary complex continuous-time impulse responses of the MPF can be constructed. Frequency responses with a single flat-top, highly chirped, or arbitrary-shape pa...

متن کامل

A single source microwave photonic filter using a novel single-mode fiber to multimode fiber coupling technique.

In this paper we present a fully tunable and reconfigurable single-laser multi-tap microwave photonic FIR filter that utilizes a special SM-to-MM combiner to sum the taps. The filter requires only a single laser source for all the taps and a passive component, a SM-to-MM combiner, for incoherent summing of signal. The SM-to-MM combiner does not produce optical interference during signal merging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics express

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2014