Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes produces 5-chlorocytosine in bacterial RNA.

نویسندگان

  • J P Henderson
  • J Byun
  • J W Heinecke
چکیده

Myeloperoxidase, a heme enzyme secreted by activated phagocytes, uses H(2)O(2) and Cl(-) to generate the chlorinating intermediate hypochlorous acid (HOCl). This potent cytotoxic oxidant plays a critical role in host defenses against invading pathogens. In this study, we explore the possibility that myeloperoxidase-derived HOCl might oxidize nucleic acids. When we exposed 2'-deoxycytidine to the myeloperoxidase-H(2)O(2)-Cl(-) system, we obtained a single major product that was identified as 5-chloro-2'-deoxycytidine using mass spectrometry, high performance liquid chromatography, UV-visible spectroscopy, and NMR spectroscopy. 5-Chloro-2'-deoxycytidine production by myeloperoxidase required H(2)O(2) and Cl(-), suggesting that HOCl is an intermediate in the reaction. However, reagent HOCl failed to generate 5-chloro-2'-deoxycytidine in the absence of Cl(-). Moreover, chlorination of 2'-deoxycytidine was optimal under acidic conditions in the presence of Cl(-). These results implicate molecular chlorine (Cl(2)), which is in equilibrium with HOCl through a reaction requiring Cl(-) and H(+), in the generation of 5-chloro-2'-deoxycytidine. Activated human neutrophils were able to generate 5-chloro-2'-deoxycytidine. Cellular chlorination was blocked by catalase and heme poisons, consistent with a myeloperoxidase-catalyzed reaction. The myeloperoxidase-H(2)O(2)-Cl(-) system generated similar levels of 5-chlorocytosine in RNA and DNA in vitro. In striking contrast, only cell-associated RNA acquired detectable levels of 5-chlorocytosine when intact Escherichia coli was exposed to the myeloperoxidase system. This observation suggests that oxidizing intermediates generated by myeloperoxidase selectively target intracellular RNA for chlorination. Collectively, these results indicate that Cl(2) derived from HOCl generates 5-chloro-2'-deoxycytidine during the myeloperoxidase-catalyzed oxidation of 2'-deoxycytidine. Phagocytic generation of Cl(2) therefore may constitute one mechanism for oxidizing nucleic acids at sites of inflammation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli.

In the presence of Escherichia coli, myeloperoxidase-catalyzed oxidation of chloride ion resulted in formation of long-lived chloramine and/or chloramide derivatives of bacterial components. The same amount of these nitrogen-chlorine (N-Cl) derivatives was obtained with either hypochlorous acid (HOCl) or the myeloperoxidase system, indicating that myeloperoxidase catalyzed the oxidation of chlo...

متن کامل

Human neutrophils employ chlorine gas as an oxidant during phagocytosis.

Reactive oxidants generated by phagocytes are of central importance in host defenses, tumor surveillance, and inflammation. One important pathway involves the generation of potent halogenating agents by the myeloperoxidase-hydrogen peroxide-chloride system. The chlorinating intermediate in these reactions is generally believed to be HOCl or its conjugate base, ClO-. However, HOCl is also in equ...

متن کامل

Myeloperoxidase: friend and foe.

Neutrophilic polymorphonuclear leukocytes (neutrophils) are highly specialized for their primary function, the phagocytosis and destruction of microorganisms. When coated with opsonins (generally complement and/or antibody), microorganisms bind to specific receptors on the surface of the phagocyte and invagination of the cell membrane occurs with the incorporation of the microorganism into an i...

متن کامل

Phagocytes produce 5-chlorouracil and 5-bromouracil, two mutagenic products of myeloperoxidase, in human inflammatory tissue.

Oxidative damage to DNA has been implicated in carcinogenesis during chronic inflammation. Epidemiological and biochemical studies suggest that one potential mechanism involves myeloperoxidase, a hemeprotein secreted by human phagocytes. In this study, we demonstrate that human neutrophils use myeloperoxidase to oxidize uracil to 5-chlorouracil in vitro. Uracil chlorination by myeloperoxidase o...

متن کامل

2-chlorohexadecanal derived from hypochlorite-modified high-density lipoprotein-associated plasmalogen is a natural inhibitor of endothelial nitric oxide biosynthesis.

OBJECTIVE Myeloperoxidase, a heme enzyme that is present and active in human atherosclerotic lesions, provides a source for the generation of proinflammatory chlorinated reactants contributing to endothelial dysfunction. Modification of high-density lipoprotein (HDL) by hypochlorous acid/hypochlorite (HOCl/OCl-) [correction]-generated in vivo by the myeloperoxidase-hydrogen peroxide-chloride sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 47  شماره 

صفحات  -

تاریخ انتشار 1999